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A B S T R A C T

In this thesis we consider cooperative games with transferable utilities,
which are also called TU games. A TU game consists of a finite set of players,
and a characteristic function from the set of all possible coalitions to a set of
payments. The characteristic function describes how much a set of players
can gain by forming a coalition. The main assumption in cooperative game
theory is that the grand coalition, i.e., the set containing all involved play-
ers, will form. Thus the challenge is how to allocate the payoff of the grand
coalition to all players in a fair way. Different definitions of fairness may re-
sult in different allocation rules. We aim to characterize some well-known
allocation rules (solutions) and their generalizations in different models for
cooperative games.

In classical games, where the worth of a coalition depends solely on the
set of its members, a group of solutions satisfying efficiency, linearity and
symmetry (ELS value) is discussed. A modified potential representation is
derived for the ELS value, based on the potential approach for the Shapley
value introduced by Hart and Mas-Colell. It is proved that the ELS value can
be axiomatized by λ-standardness on two-person games and the Sobolev con-
sistency with respect to a reduced game, which is derived by the previously
mentioned modified potential representation. Based on Young’s characteriza-
tion for the Shapley value, we give another axiomatization to the ELS value
by using efficiency, symmetry, and a modified strong monotonicity.

If the worth of a coalition depends not only on its members (as in the classi-
cal game), but also on the order of players entering into the game, then a gen-
eralized game is formed. Different permutations of a set of fixed players may
have different payoffs, so the new characteristic function is a mapping from
the set of all possible ordered coalitions to a set of payments. The generalized
ELS value, Core, Weber Set and especially the Shapley value are discussed in
this generalized game model. It is proved that the generalized Shapley value,
introduced by Sanchez and Bergantinos, equals the expectation with respect
to a special procedure, when all the choosing processes are subjected to uni-
form distribution and the standard solution on two-person games is used.
Another characterization of the generalized Shapley value is given in terms
of associated consistency, continuity and inessential player property in the
generalized game space. Throughout the axiomatization, a matrix approach
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is used to simplify the proof. Moreover, a so-called position-weighted value
is defined and discussed in the generalized game model. Unlike the general-
ized Shapley value, this new value does not satisfy the generalized symmetry,
but a stronger version of generalized symmetry. We propose one candidate
for this value, which is derived by Evans’ consistency (with respect to a dif-
ferent procedure compared with the one used for the generalized Shapley
value) together with standardness on two-person games.

To model some other real life problems, for example the car insurance
problem, a multiplicative game model is considered. The payoff to players is
treated in a multiplicative way instead of the usual additive way. In this new
setting we only focus on strictly positive games, in which every coalition has
strictly positive payoff, and specifically the payoff of the empty set is 1. The
Shapley value, ELS value and Least Square value in the classical game space
and their properties are generalized accordingly to the multiplicative game
model.



S Y N O P S I S O F M A I N R E S U LT S O F T H I S T H E S I S

As an own, mathematical discipline with a large number of applications,
game theory studies different situations of competition and cooperative be-
tween several involved parties. The cooperative games, as one branch of
game theory, is based on the assumption that players can form coalitions
and make binding agreements on how to distribute the profit of these coali-
tions. Cooperative game theory focuses on payoffs and coalitions, rather than
on strategies. The cooperative game theory often is interested in an axioma-
tization analysis for different values, in contrast to the equilibrium analysis
in the non-cooperative games. All topics discussed in this thesis are about
cooperative games with transferable utility, or so-called TU games, in which
the worth of a coalition can be expressed by a number. This number can
be regarded as utility, and the implicit assumption is that it makes sense to
transfer the utility among the players.

A cooperative game model contains a set of players, and a detailed descrip-
tion of what players and coalitions can attain in terms of utilities. For any
TU game, a set of vectors based on considerations of fairness, or efficiency,
whose dimension equals the number of players, is called a solution of the
TU game. If the solution contains only one vector, then this unique vector
is called a single-valued solution, or a value. The Shapley value, named in
honor of L. Shapley, who introduced it in 1953, is one of the most well-known
solution concepts in cooperative game theory. To each cooperative game it
assigns a unique distribution (among the players) of a total surplus gener-
ated by the coalition of all players. Various axiomatizations for the Shapley
value are known. The initial one given by Shapley [74] uses four properties:
efficiency, symmetry, linearity, and null player property. If the null player
property is dropped out, then as was shown by Ruiz et al. [69] there is a
unique class of values satisfying efficiency, symmetry and linearity. We call
this class of values the ELS values, and clearly the Shapley value belongs to
this class. In this thesis, we mainly studied the Shapley value, the ELS values,
and their extensions, on different game spaces.

We denote by G the classical game space, G ′ the generalized game space (in
which the worth of a coalition relies on both the players in the coalition and
the orders of players entering into the game), and G+ the multiplicative game
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space (in which only strictly positive games are considered). In the following
we explain explicitly the main results we derived in different game spaces.

results in the classical game space . In Chapter 2, all characteri-
zations deal with the ELS values (i.e., the class of values satisfying efficiency,
linearity and symmetry) on G.

The potential is a successful concept in physics. In the late eighties, this
approach turned out to be fruitful also in cooperative game theory. Hart
and Mas-Colell [31] proved that, the Shapley value on G admits a unique
potential representation. Inspired by their characterization, we modified the
potential representation, such that under two simple conditions, there is a
one to one correspondence between the ELS values and the modified poten-
tial representations:

• An ELS value on G admits a modified potential representation, if and only if
two simple conditions are satisfied. (Theorem 2.4).

For any n-person game, the Sobolev consistency means in general, that the
payoff of players in a (n− 1) subcoalition should not change, or they should
have no reason to renegotiate, if they apply the same “solution rule” in the
reduced game with the same (n− 1) players as in the original game. The “so-
lution rule” and the reduced game are correlated. Sobolev [79] proved that
the Shapley value on G satisfies Sobolev consistency with respect to a spe-
cially chosen reduced game. Using the modified potential representation, we
could find the reduced game associated with the ELS value, such that this
value satisfies the Sobolev consistency with respect to this reduced game.
Sobolev [79] used four properties, namely substitution property, covariance,
efficiency, and Sobolev consistency to axiomatize the Shapley value on G.
Later, Driessen [13] proved that if a value satisfies substitution property and
covariance, then the value is standard for two-person games. By modifying
the standardness for two-person games, together with the Sobolev consis-
tency we can axiomatize the ELS value:

• The ELS value is the unique value on G satisfying b21-standardness on two
person games and the Sobolev consistency with respect to a specific reduced
game. (Theorem 2.6).

Young [97] axiomatized the Shapley value on G by using efficiency, sym-
metry and the so-called strong monotonicity. Inspired by his approach, we
modify strong monotonicity, such that it can be used together with efficiency
and symmetry, to axiomatize the ELS values:



• The ELS value is the unique value on G satisfying efficiency, symmetry and
B-strong monotonicity. (Theorem 2.7).

In the uniqueness proof, we make use of a new basis of the game space G.
The special feature of this new basis {〈N,ubT 〉 | T ⊆ N, T 6= ∅} is that, the ELS
value for player i in 〈N,ubT 〉 equals 1 if i ∈ T , otherwise it equals 0.

results in the generalized game space . In this generalized game
space, the worth of coalitions not only depend on the players in that coali-
tion, but also on the orders of players entering into the game. Thus different
permutations of a fixed set of players may admit different worths. This game
model was introduced firstly by Nowak and Radzik [58], and then it was re-
fined by Sanchez and Bergantinos [70]. In Chapter 3 the generalized Shapley
value defined by Sanchez and Bergantinos [70] is studied.

Evans [20] introduced a procedure on G, and proved that the unique value
which is consistent with this procedure is the classical Shapley value. We
modify Evans’ procedure such that it can be used in the generalized model.
More precisely, for any generalized game, firstly, we choose one permutation
of the grand coalition; secondly, we select two subcoalitions according to
this permutation; thirdly, we choose two leaders separately from the two
subcoalitions; then the two leaders play a two-person bargaining game. The
rule is that the two-person standard solution is used in the bargaining, and
each leader gives the rest of players in his subcoalition an amount of payoff.
We prove that if all chosen processes are subjected to uniform distribution,
then the expected value of the procedure is just the generalized Shapley
value:

• The generalized Shapley value is the unique value on G ′ satisfying Evans’ con-
sistency with respect to a chosen procedure and standardness on two-person
games. (Theorem 3.1 and Corollary 3.1).

It is shown by Hamiache [25] that the classical Shapley value is the unique
value on G satisfying associated consistency, continuity and inessential game
property. The proof of this axiomatization is very complicated, and later
Xu et al. [93] used a matrix approach to simplify the proof. We modify the
three properties used in the axiomatization from the classical game space to
the generalized game space, and applying an analogous matrix approach to
establish the proof:

• The generalized Shapley value is the unique value on G ′ satisfying generalized
associated consistency, continuity, and generalized inessential game property.
(Theorem 3.7).



The main problem in the matrix approach is to prove that a certain matrix
is diagonalizable. According to the Diagonalization Theory, a matrix is diag-
onalizable if and only if the sum of dimensions of the distinct eigenspaces
equals the number of column vectors of this matrix, and this happens if and
only if the dimension of the eigenspace for each eigenvalue equals the al-
gebraic multiplicity of the eigenvalue. Instead of a n by n matrix for the
classical case, in the generalized game space we consider a m by m matrix
with m =

∑n
s=1 s!

(
n
s

)
. This makes it more difficult to find the eigenvalues,

eigenvectors and rank of that matrix.
Besides the generalized Shapley value, in Chapter 4 we also focus on other

values in the generalized game space. If the weighted marginal contribution
is used (instead of the average marginal contribution as in the generalized
Shapley value), a so-called position-weighted value (see Definition 4.1) is
derived (instead of the generalized Shapley value). We prove that:

• The position-weighted value satisfies efficiency, null player property, and a
modified symmetry (see Section 4.1.2), instead of the symmetry defined by
Sanchez and Bergantinos that is satisfied by the generalized Shapley value.

Moreover, we show that a candidate for this value can be derived by mod-
ifying another procedure given by Evans (which is different from the one
used for the generalized Shapley value): two players in the grand coalition
are randomly chosen to merge, with each ordered pair having equal probabil-
ity of being chosen, and then the two merged players have equal probability
of being chosen as representative. It is shown that

• There is a unique position-weighted value on G ′ satisfying Evans’ consistency
with respect to the above chosen procedure and standardness on two-person
games. (Theorem 4.1).

We generalize the ELS value on G to the game space G ′:

• There is a unique value on G ′ satisfying generalized efficiency, linearity and
generalized symmetry. (Theorem 4.2).

Nembua [56] proved that the ELS value can be seen as a procedure to dis-
tribute the marginal contribution of the incoming player among the latter
and the original members of a coalition. We generalize this interpretation to
the game space G ′ (Theorem 4.3). The modified potential representation for
the ELS value on G ′ is also generalized to G ′ (Theorem 4.4) whereas Theorem
2.4 also holds on G ′. Moreover, we modify the standardness on two-person
games and axiomatize the generalized ELS value together with Evans’ con-
sistency (with the first procedure mentioned in Chapter 3) (Theorem 4.5).



• The Core and Weber Set on G are generalizable to G ′. (Definition 4.3 and 4.4).

Similar as in the classical game space, we prove that the generalized Core is a
subset of the generalized Weber Set (Theorem 4.6). Moreover equality holds
for generalized convex games (Theorem 4.7). The definition of generalized
convex games can be found in Definition 4.5.

results in the multiplicative game space . In Chapter 5 we only
consider strictly positive games. In the multiplicative game space G+, the
payoffs to players are treated in a multiplicative way, instead of the usual
additive way. The following result is derived on G+:

• There is a unique value on G+ satisfying multiplicative efficiency, multiplica-
tivity and symmetry. (Theorem 5.1).

The multiplicative efficiency and multiplicativity are modified with respect
to the efficiency and linearity on G respectively. Thus this value can be re-
garded as a generalization of the ELS value from G to G+. We call this value
the MEMS value. The interpretation given by Nembua [56] is also general-
ized to G+ (Theorem 5.2). We define the potential in a multiplicative way
and generalize the potential representation results to the game space G+

(Theorem 5.3). Moreover Theorem 2.2 holds in the new game space G+.
Myerson [52] introduced a balanced contribution property (also called fair

allocation rule) in the classical game space. Ortmann [63] generalized this
property to the multiplicative game space G+ under a new name, preserva-
tion of ratios, which can be used to axiomatize the multiplicative Shapley
value together with multiplicative efficiency. We modify the preservation
of ratios with the help of the multiplicative potential results, such that the
MEMS value satisfy this property (Lemma 5.2). This leads to an axiomati-
zation of the MEMS value by multiplicative efficiency and preservation of
generalized ratios:

• The MEMS value is the unique value on G+ satisfying multiplicative effi-
ciency and preservation of generalized ratios. (Theorem 5.4 and 5.5)

The relations between the multiplicative game space and the additive
game space are shown by Theorem 5.6 and 5.7. We also find that the ELS
value on G satisfies a so-called additive preservation of generalized differ-
ences (Corollary 5.1).

The multiplicative Shapley value was introduced by Ortmann [63]. We
generalize the dummy player property to G+, and define a basis for the



multiplicative game space G+ in order to complete the uniqueness proof for
the following result:

• The multiplicative Shapley value is the unique value on G+ satisfying mul-
tiplicative efficiency, multiplicativity, symmetry and multiplicative dummy
player property. (Theorem 5.9).

A recursive formula for the multiplicative Shapley value is given in Theorem
5.10. The dual game is defined in the multiplicative setting, and it is proved
that in the dual game the multiplicative Shapley value behaves as in the
original game (Theorem 5.11).

Moreover we define the multiplicative excess on G+, and characterize the
Least Square value in this multiplicative game space G+ (Theorem 5.12).
Analogous to the analysis in Ruiz, Valenciano and Zarzuelo [68] for the Least
Square value in the classical game space, an axiomatization is given for the
multiplicative Least Square value:

• The multiplicative Least Square value is the unique value on G+ satisfying
multiplicative efficiency, multiplicativity, multiplicative symmetry, multipli-
able game property and the coalitional monotonicity (Theorem 5.13).

Based on the work presented in this thesis, the following publications are
being prepared or are published, respectively:

• Y. Feng and T.S.H. Driessen. A potential approach to efficient, multi-
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2012). Univ. der Bundeswehr München, May 29-31, 2012, Munich, Ger-
many, 2012.

• Y. Feng, T.S.H. Driessen, and G.J. Still. Consistency to the values for
games in generalized characteristic function form. In Nikolay A. Zenke-
vich. Leon A. Petrosjan, editor, Contributions to Game Theory and Manage-
ment vol. VI (GTM2012). Graduate School of Management SPbU, 2013.

• Y. Feng, T.S.H. Driessen, and G.J. Still. A matrix approach to associated
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L I S T O F S Y M B O L S

N = {0, 1, 2, . . .} the set of natural numbers

Z the set of integers

R the set of real numbers

R+ the set of nonnegative real numbers

R++ the set of positive real numbers

Rn the n-dimensional vector space

RN the vector space with coordinates indexed by N

x ∈ RN the payoff vector

N the player set

S,S ⊆ N the subset of player set N with no order information

s or |S| the cardinality of the set S

v = (v(S))S⊆N the worth vector

pns := s!(n− s− 1)!/n! =
(
n
(
n−1
s

))−1
, 0 6 s 6 n− 1

Csn :=
(
n
s

)
= n!/(s!(n− s)!), 0 6 s 6 n

bns sequence of real numbers with bnn = 1, 1 6 s 6 n

G the classical game space

GN the classical game space with player set N

e(S, x) the excess of S with respect to x in the game v ∈ G

ē(v, x) average excess at x in the game v ∈ G

Q the potential on G

Sh the classical Shapley value

Φ the classical ELS value
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G ′ the generalized game space

G ′N the generalized game space with player set N

H(S) the set of all possible permutations of S

S ′,S ′ ∈ H(S) one permutation of S

Ω the set of all ordered coalitions (with player set N)

N(ij) the (n-1)-player set with i, j ∈ N merging as one player

ΩN(ij)
the set of all ordered coalitions with player set N(ij)

V(S ′) the set of all extensions of S ′

R(S ′) the set of all restrictions of S ′

Q ′ the potential on G ′

Sh ′ the generalized Shapley value

Φ ′ the generalized ELS value

Ψ ′ the position-weighted value

MSh
′

the matrix such that Sh ′(N, v) =MSh
′ · v

vλ, λ ∈ R the associated generalized TU game

Mλ, λ ∈ R the matrix such that vλ =Mλ · v

G+ the multiplicative game space

G+
N the multiplicative game space with player set N

e+(S, x) the excess of S with respect to x in the game v ∈ G+

ē+(v, x) average excess at x in the game v ∈ G+

Q+ the potential on G+

Sh+ the multiplicative Shapley value

Φ+ the multiplicative ELS value
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1
I N T R O D U C T I O N

Game theory did not really exist as an independent field until John von Neu-
mann published his paper Zur Theorie der Gesellschaftsspiele 1 [87] in 1928.
In collaboration with Oskar Morgenstern, later in 1944, John von Neumann
published the book Theory of Games and Economic Behavior [89], which can
be regarded as the foundation of modern game theory. During this time pe-
riod, all the studies were based on the assumption that players can enforce
agreements among them about proper strategies, that is what we call coop-
erative games. In 1950, John Forbes Nash introduced the Nash equilibrium
[53], which can be regarded as a criterion for mutual consistency of strategies
of non-cooperating players. This equilibrium concept opened a new page for
the research in non-cooperative games. Besides the Nash bargaining solution
[54] introduced in 1950, the concepts of the extensive form game, repeated
game, core, and the Shapley value were developed also in the 1950s, a time
where game theory experienced a flurry of activities.

Now more than seventy years have passed, game theory is not just the-
oretical work in the discipline of mathematics, but is also a very dynamic
and expanding field with a large number of applications in economics, busi-
ness, political science, biology, computer science, philosophy, and certainly
in many other fields closely related to our common life. The most faithful
evidence that game theory influences strongly the development of our social
society can be seen with the fact that ten game-theorists2 have been awarded
the Nobel Memorial Prize in Economic Sciences during the last two decades.

1.1 game theoretical approach

Game theory aims to study situations of competition and (or) cooperation
among agents in the real world, and put them into a mathematical model.
This is the initial step. The second step is to provide general mathematical

1 English translation was done by Mrs. Sonya Bergmann in title On the theory of Games of strategy
[88].

2 John Forbes Nash, Reinhard Selten and John Harsanyi became Economics Nobel Laureates in
1994; Thomas Schelling and Robert Aumann got their Nobel Prize in 2005; Leonid Hurwicz,
Eric Maskin and Roger Myerson were awarded in 2007; and in 2012, Nobel Prize was granted
to Alvin Roth and Lloyd Shapley! [1]
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2 introduction

techniques for analyzing situations in which two or more players make deci-
sions that will influence one another’s benefit. In order to describe the game
model in the initial step, one should point out the rules, the strategy space
of any player, potential payoffs to the players, the preferences of each player
over the set of all potential payoffs, etc. According to the rules, the game
theoretical approaches are classified into two branches: cooperative and non-
cooperative game theory. The usual distinction between these two classes
is:

In cooperative games: players can form coalitions and make binding agree-
ments on how to distribute the payoffs of these coalitions.

In non-cooperative games: players have explicit strategies and can not
make binding agreements.

This distinction is not sharp in some cases and in fact the so-called Nash
program3 is an attempt to bridge the gap between these two game theoretic
worlds.

In the following chapters, we focus on cooperative game theory. So all re-
sults are based on the main assumption that players can make binding agree-
ments. In the real world, binding agreements are prevalent in economics. In-
deed, almost every one-stage seller-buyer transactions is supported by bind-
ing contracts. Usually, an agreement or a contract is binding if its violation
entails high monetary penalties which deter the players from breaking it.

1.2 cooperative games

Cooperative games are divided into two categories: games with transferable
utility (TU game) and games with nontransferable utility (NTU game). The
distinction is that the worth of a coalition on a TU game is expressed by a
single number in a TU game, and by a set in a NTU game. It is useful to
mention that, a TU game can be simply transformed to a NTU game, while
the opposite statement is not true. Aumann [3] pointed out that TU games
are used when money is available and desirable as a medium of exchange,
and if the utilities of the players are linear in money. More generally, the
single number which represents the worth of a coalition in the TU game can
be regarded as an amount of money, and the implicit assumption is that, it
makes sense to transfer this utility among the players. The following chapters
will focus on TU games.

3 See a comprehensive survey [73] on this topic.
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Definition 1.1. Formally, a cooperative game with transferable utility, or shortly,
a TU game, is an ordered pair 〈N, v〉, where N is a nonempty, finite set of players,
and v : 2N → R is a characteristic function satisfying v(∅) = 0.

An element i ∈ N is called a player, and a subset S ⊆ N is called a coalition.
The associated real number v(S) is called the worth of coalition S. The size
of coalition S is denoted by |S|, or shortly by s if no ambiguity arises. Par-
ticularly |N|, or equivalently, n denotes the size of the grand coalition N. We
denote by GN the set of all cooperative TU games with player set N and by
G the space of all cooperative TU games with arbitrary player sets.

Definition 1.2. Let 〈N, v〉 be a game. A subgame of 〈N, v〉 is a game 〈T , vT 〉 where
T ⊆ N, T 6= ∅ and vT (S) = v(S) for all S ⊆ T . The subgame 〈T , vT 〉 will also be
denoted by 〈T , v〉.

In most applications of cooperative games, the players are persons or
groups of persons, for example, labor unions, towns, nations, etc. However
in some interesting game theoretic models of economic problems, the players
may not be persons. They may be objectives of an economic project, factors
of production, or some other economic variables of the situation under con-
sideration. The following two examples will illustrate such a case.

Example 1.1. (Glove Game) [67] Let N = {1, 2, . . . ,n} be divided into two dis-
joint subsets L and R. Each member of L possesses a left hand glove, and each mem-
ber of R a right hand glove. A single glove is worth nothing, a right-left pair of
gloves has value of one euro. This situation can be modeled as a TU game 〈N, v〉,
where for each S ∈ 2N, we have v(S) := min{|L ∩ S|, |R ∩ S|}, and particularly
v(N) := min{|L|, |R|}.

Example 1.2. (Bankruptcy Game) [12] A person who dies, leaving nonnegative
debts d1,d2, . . . ,dn, and estate E ∈ R+, such that

0 6 E <
n∑
j=1

dj.

The problem is that, given the debts vector d = (d1,d2, . . . ,dn) ∈ Rn, these debts
are mutually inconsistent in that the estate is insufficient to meet all of the debts. The
game theoretic approach to the bankruptcy problem is started in O’Neill [60], who
defined the corresponding bankruptcy game 〈N, vE;d〉 by N = {1, 2, . . . ,n}, and

vE;d(S) = max{0,E−
∑
j∈N\S

dj} for all S ⊆ N,
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Particularly, vE;d(N) = E. So the player set N consists of the n creditors (or heirs)
and the worth of coalition S equals either zero or what is left of the estate after each
member i in the complementary coalition N \ S is paid his associated debt di.

Definition 1.3. A game 〈N, v〉 is called monotone if v(S) 6 v(T) for all S ⊆ T ⊆ N,
and it is called superadditive if

v(S) + v(T) 6 v(S∪ T) for all S, T ⊆ N and S∩ T = ∅. (1.1)

When precisely one coalition, either S or T in (1.1) refers to singletons, then game v
is called weakly superadditive.

Condition (1.1) is satisfied in most of the applications of TU games. Indeed,
it may be argued that if the union of the two disjoints sets S ∪ T is formed,
its members can decide to act as if S and T had formed separately. Doing so
they will receive at least the sum of their worth v(S) + v(T).

Definition 1.4. A game 〈N, v〉 is convex if

v(S) + v(T) 6 v(S∪ T) + v(S∩ T) for all S, T ⊆ N.

Clearly a convex game is superadditive. It is worth mentioning that the
Bankruptcy Game we introduced in Example 1.2 is a convex game. For any
game 〈N, v〉, any player i ∈ N, and any coalition S ⊆ N, the marginal contri-
bution of i to S in 〈N, v〉, denoted by mSi (v), is given by

mSi (v) =

v(S) − v(S \ {i}) if i ∈ S;

v(S∪ {i}) − v(S) if i 6∈ S.
(1.2)

Convexity of a game 〈N, v〉 is equivalent to mSi (v) 6 mTi (v) for all i ∈ N,
all S ⊆ T ⊆ N \ {i}. Thus a game is convex if and only if the marginal
contribution of a player to a coalition is monotonically nondecreasing with
respect to set-theoretic inclusion. If the game 〈N,−v〉 is convex, then 〈N, v〉
is called concave. The game in the following example is a concave game.

Example 1.3. (Airport Cost Game) [66] Consider an airport with one runway.
Suppose that there are m different types of aircrafts and that ck, 1 6 k 6 m, is
the cost of building a runway to accommodate an aircraft of type k. Without loss of
generality, we assume the costs are sorted in increasing order, that is, c1 6 c2 6
. . . 6 cm. Let Nk be the set of aircraft landings of type k in a given time period,
and let N =

⋃m
k=1Nk. Thus the players (the members of N) represent landings
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of aircrafts. The characteristic cost function of the corresponding airport cost game
〈N, c〉, is given by c(∅) = 0 and

c(S) = max{ck | 1 6 k 6 m,S∩Nk 6= ∅} for all S ⊆ N.

Particularly c(N) = cm.

The airport cost game is an application of game theoretic analysis to the
cost allocation problem of the airport. The foregoing model has been investi-
gated by Littlechild [42], Littlechild and Owen [43] and others.

Definition 1.5. A game 〈N, v〉 is inessential if its characteristic function is additive,
that is, if v(S) =

∑
i∈S v({i}) for any S ⊆ N, S 6= ∅.

Clearly an inessential game is trivial from a game-theoretic point of view.
That is, if every player i ∈ N demands at least its individual worth v({i}),
then the distribution of v(N) is uniquely determined.

Given two games 〈N, v〉, 〈N,w〉 and scalar α ∈ R, the usual operation of
addition 〈N, v +w〉, is defined by (v +w)(S) = v(S) +w(S) for all S ⊆ N,
and scalar multiplication 〈N,α · v〉, is defined by (α · v)(S) = α · v(S) for all
S ⊆ N.

Definition 1.6. Two games 〈N, v〉 and 〈N,w〉 are strategically equivalent if there
exist α ∈ R+ and β ∈ RN such that

w(S) = α · v(S) +
∑
i∈S

βi for all S ⊆ N. (1.3)

We call a game 〈N, v〉 zero-normalized if v({i}) = 0 for all i ∈ N. Note that
every game is strategically equivalent to a zero-normalized game.

1.3 solution of games

As already mentioned, the theory of games consists of two parts, a modeling
part in the initial step and a solution part in the second step. Concerning the
solution part, the resulting payoffs to the players are determined according
to certain solution concepts. Here, any solution concept is based on a specific
interpretation of the fairness of some feasible payoffs. The relevant criteria
of a fair payoff are numerous, thus various solution concepts were proposed.
In the framework of cooperative TU games, it is usually assumed that all
players who are participating in a cooperative game will work together and
form the grand coalition. And if a coalition forms, it may distribute its worth
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among its members according to the principle of transferable utility. So the
central question is how to distribute the total profit of the grand coalition
among all its players.

Let N be the player set and let R denote the set of real numbers. As usual
RN denotes the set of (column) vectors x = (xi)i∈N with components xi ∈ R.
Formally, a payoff vector x = (xi)i∈N ∈ RN of a TU game 〈N, v〉 is a vector
allocating a payoff xi to player i ∈ N. The payoff xi to player i represents
an assessment of i’s gain for participating in the game. For a payoff vector
x ∈ RN and coalition S ⊆ N, we denote by x(S) =

∑
i∈S xi the total payoff

to the members of coalition S, where x(∅) = 0. The nonempty set

X∗(N, v) = {x ∈ RN | x(N) 6 v(N)},

is called the set of feasible payoff vectors for the game 〈N, v〉.

Definition 1.7. A solution on G is a function f which associates with each game
〈N, v〉 ∈ G a subset f(N, v) of X∗(N, v).

For any given game 〈N, v〉, a payoff vector x ∈ RN is called efficient4 if
equality in X∗(N, v) is reached, i.e. x(N) = v(N). Efficiency is a widely used
criterion in social choice and bargaining theory. Denote by I∗(N, v) the preim-
putation set which contains all the efficient payoff vectors for the game 〈N, v〉,
that is

I∗(N, v) = {x ∈ RN | x(N) = v(N)}.

For a given game 〈N, v〉, a payoff vector x ∈ RN is individually rational for the
game 〈N, v〉, if xi > v({i}) for all i ∈ N. Individual rationality requires that ev-
ery player i gets at least his worth v({i}). Denote by I(N, v) the imputation set
for the game 〈N, v〉 which contains all individually rational preimputations,
then

I(N, v) = {x ∈ RN | x(N) = v(N), and xi > v({i}) for all i ∈ N}.

If the criterion of individual rationality is strengthened by assuming rational-
ity not only for single players, but for every coalition S ⊆ N, then we obtain
the following solution concept.

Definition 1.8. The core of a game 〈N, v〉, denoted by C(N, v), is defined by

C(N, v) = {x ∈ X∗(N, v) | x(S) > v(S) for all S ⊆ N, S 6= ∅}. (1.4)
4 It is also called Pareto optimal feasible payoff.
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Although the core is empty for some games 5,6, it is still one of the most
attractive set-valued solutions, since each payoff vector in the core is a highly
stable payoff distribution. The following game, introduced by Shapley and
Shubik [78], always has a nonempty core.

Example 1.4. (Assignment Game I) Let N = S ∪ B, S,B 6= ∅, and S ∩ B = ∅.
Each i ∈ S is a seller who has a house which for him is worth ai (units of money).
Each j ∈ B is a potential buyer whose reservation price for i’s house is bij. Denote
by C the |S|× |B| matrix with entries (cij)i∈S,j∈B (representing the joint net profits
of the pair {i, j}) defined by:

cij = max{0,bij − ai}. (1.5)

Let J and K be disjoint finite sets. An assignment from J (J ⊆ S) to K (K ⊆ B) is a
1− 1 function α with domain dom(α) ⊆ J and image Im(α) ⊆ K. The assignment
game 〈N, v〉 with player set N = S∪B is defined by

v(T) = max
α

 ∑
i∈dom(α)

ci,α(i)

 for all T ⊆ N, (1.6)

where the maximum is taken over all assignments α from T ∩ S to T ∩B.

In the above assignment game, a single player can get nonzero payoffs
only when the player belongs to the maximal matching. So players outside
any maximal matching get nothing. However under some circumstance, the
worth of unmatched players can be regarded as what the player owns by
himself (either the house if the player is a seller, or an amount of money if
the player is a buyer). This generalized assignment game is introduced by
Owen [65] as follows:

Example 1.5. (Assignment Game II) A generalized assignment problem is a
quintuple (S,B,C,p,q), where S and B are the sets of sellers and buyers, respec-
tively. C is the |S|× |B|-matrix with entries cij defined by (1.5). The vector p ∈ RS

and q ∈ RB respectively are the reservation prices of sellers and buyers respec-

5 The Bondareva-Shapley theorem describes a necessary and sufficient condition for the non-
emptiness of the core for a cooperative game. The theorem was formulated independently by
Olga Bondareva [6] and Lloyd Shapley [76] in the 1960s.

6 When the core is empty, one may turn to find the so-called ε-core (see [21] and [38]), in which
the conditions for the core are relaxed.
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tively. So the generalized assignment game 〈N, v〉 in characteristic function form
with player set N = S∪B is defined by,

v(T) = max
α

 ∑
i∈dom(α)

ci,α(i) +
∑

i∈T∩S\dom(α)

pi +
∑

j∈T∩B\Im(α)

qj

 ,

for all T ⊆ N, where the maximum is taken over all assignments α from T ∩ S to
T ∩B.

In the generalized assignment game, the worth of an arbitrary coalition
is not only the worth of the maximum matching in the coalition (as in As-
signment game I), but also the sum of worths for single players not in the
matching (with respect to vector p and q depending on whether the player is
a seller or a buyer). These two assignment games are strategically equivalent
(see Definition 1.6), and they coincide if p = q = 0.

Owen [65] proved that, the generalized assignment game is superadditive
and it always has an nonempty core. Other well-known set-valued solution
concepts contain the stable set7,8[89], the bargaining set [4], the prekernel [47],
and the kernel [10]. It holds that the kernel is always a subset of the bargain-
ing set and, the intersection of the prekernel and the imputation set is always
a subset of the kernel. There are two main disadvantages for these set-valued
solutions. Firstly although the prekernel and the bargaining set always exist,
the other set-valued solutions can be empty. Secondly when they are not
empty, it is commonly difficult to choose one from the whole set, since dif-
ferent players may have different preferences. Therefore we are interested in
solution concepts which assign to every game exactly one allocation. Such
single-valued solutions are called values.

Definition 1.9. A value φ on GN is a mapping which assigns to every TU game
〈N, v〉 exactly one (feasible) payoff vector φ(N, v) ∈ RN.

Among all values, the Shapley value [74], the prenucleolus9 [79], the nucleo-
lus10 [72], and the τ-value [82, 12] are the best known. The following chapters
mainly focus on characterizing the single-valued solution concepts.

7 The stable set is also known as the von Neumann-Morgenstern solution [89]. A stable set may
or may not exist [44], and if it exists, it is typically not unique [46].

8 The core is contained in any stable set, and if the core is stable it is the unique stable set [12].
9 The prenucleolus is always in the prekernel.

10 If the core is non-empty, the nucleolus is in the core. The nucleolus is always in the kernel, and
since the kernel is contained in the bargaining set, it is always in the bargaining set [12].
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1.3.1 Properties of solutions

Let φ be a value on GN. We mention some commonly used properties (which
can also be regarded as criteria of fairness) when characterizing values. Value
φ is said to satisfy

(i) efficiency, if
∑
i∈Nφi(N, v) = v(N) for all v ∈ GN;

(ii) individual rationality, if φi(N, v) > v({i}) for all i ∈ N, all v ∈ GN;

(iii) additivity, if φ(N, v) +φ(N,w) = φ(N, v+w) for all v,w ∈ GN;

(iv) linearity11, if φ(N,a · v+b ·w) = a ·φ(N, v)+b ·φ(N,w) for all a,b ∈ R,
all v,w ∈ GN;

(v) anonymity, if φπ(i)(N,πv) = φi(N, v) for all i ∈ N, all v ∈ GN, and every
permutation π on N. The game 〈N,πv〉 is given by (πv)(S) = v(π−1(S))

for all S ⊆ N;

(vi) symmetry12, if φi(N, v) = φj(N, v) for all symmetric players i and j in
game v ∈ GN. Players i and j are called symmetric players in 〈N, v〉 if
none of them is more desirable, or equivalently, v(S ∪ {i}) = v(S ∪ {j})

for all S ⊆ N \ {i, j};

(vii) dummy player property, if φi(N, v) = v({i}) for all dummy players i in
game v ∈ GN. Player i ∈ N is called a dummy player in 〈N, v〉 if v(S ∪
{i}) = v(S) + v({i}) for all S ⊆ N \ {i};

(viii) null player property13, if φi(N, v) = 0 for all null players i in game v ∈ GN.
Player i ∈ N is called a null player in 〈N, v〉 if v(S ∪ {i}) = v(S) for all
S ⊆ N \ {i};

(ix) inessential game property, if φi(N, v) = v({i}) for all i ∈ N, all inessential
games v ∈ GN (see Definition 1.5);

(x) covariance14, if φ(N,α ·v+β) = α ·φ(N, v)+β for all v ∈ GN, all α ∈ R+,
and all β ∈ RN. Here the game 〈N,α · v+β〉 is defined by (1.3);

(xi) continuity, if for every point-wise convergent sequence of games
{〈N, vk〉}∞k=0, the limit of which is the game 〈N, v̄〉, the corresponding
sequence of values {φ(N, vk)}∞k=0 converges to the value φ(N, v̄);

11 Clearly linearity is stronger than additivity.
12 This property is a weaker version of anonymity.
13 This property is a weaker version of the dummy player property.
14 This property is also called strategic equivalence.
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(xii) monotonicity, if φi(N, v) > 0 for all i ∈ N, and all monotonic games
v ∈ GN (see Definition 1.3);

(xiii) coalitional monotonicity, if φi(N, v) > φi(N,w) for all i ∈ S, all v,w ∈ GN

such that v(S) > w(S) for some S ⊆ N, and v(T) = w(T) for all T ⊆ N,
T 6= S;

(xiv) strong monotonicity, if φi(N, v) > φi(N,w) for all i ∈ N, all v,w ∈ GN

such that mSi (v) > m
S
i (w) for all S ⊆ N. Here, mSi is defined by (1.2);

(xv) consistency, if φi(T , v∗T ) = φi(N, v) for all i ∈ T , all T ⊆ N, all v ∈ GN.
Here the definition of the reduced game 〈T , v∗T 〉 depends on value φ.

1.3.2 The Shapley value

The Shapley value 15 16 is, among all the single-valued solution concepts, the
most well-known and attracting one. It was introduced and characterized
by Shapley [74] in view of efficiency, additivity, symmetry and null player
property. The familiar formula for the Shapley value Sh(N, v) on RN for a
game v ∈ GN is:

Shi(N, v) =
∑

S⊆N\{i}

pns · (v(S∪ {i}) − v(S)) for all i ∈ N, (1.7)

where pns = s!(n− s− 1)!/n! for all 0 6 s 6 n− 1. Shapley value means,
each player should be paid according to how valuable his cooperation is for
the other players. If for each S ⊆ N \ {i}, pns is seen as the probability that
player i joins the coalition S and the marginal contribution v(S∪ {i}) − v(S) is
paid to player i for joining the coalition S, then the Shapley value Shi(N, v)
for player i, as given in (1.7), is simply the expected payoff to player i in the
game 〈N, v〉.

Without going into details, we mention here that, in the uniqueness proof
for the Shapley value given by Shapley [74], the following basis for the game

15 See Moretti and Patrone [49] for applications of the Shapley value, in which quite diversified
fields are considered.

16 See Monderer and Samet [48] for a comprehensive overview of variations on the Shapley value,
including the family of probabilistic values and a subdivision of quasivalues and semivalues.
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space GN is used: With every coalition T ⊆ N, there is associated its unanimity
game 〈N,uT 〉 defined by

uT (S) =

1 if T ⊆ S;

0 otherwise.
for all S ⊆ N. (1.8)

For any player i ∈ N, it holds Shi(N,uT ) = 1/t if i ∈ T , and Shi(N,uT ) = 0
if i 6∈ T . Note that any game 〈N, v〉 on G can be represented as a linear
combination of the unanimity games 〈N,uT 〉, T ⊆ N, T 6= ∅, by

v =
∑
T⊆N,
T 6=∅

cT (v) · uT ,

where cT (v) is the so-called dividend with respect to v and the coalition T ,
T ⊆ N. The dividend cT (v), T ⊆ N, of a game 〈N, v〉, as defined by Harsanyi
[28, 29], is of the form:

cT (v) =
∑
R⊆T

(−1)t−r · v(R) for all T ⊆ N. (1.9)

In the following chapters, we will always use cT instead of cT (v) for conve-
nience, if no ambiguity occurs.

Axiomatic characterizations of the Shapley value on GN which do not in-
clude the additivity property can be found in Young [97], who characterized
the Shapley value on GN by means of the efficiency, symmetry and strong
monotonicity. Moreover, Hart and Mas-Colell [31] proved that a value φ on
GN is the Shapley value if and only if φ satisfies efficiency, symmetry and
consistency with respect to the reduced game 〈T , vφT 〉 for all T ⊆ N, defined
by:

v
φ
T (S) = v(S∪ (N \ T)) −

∑
i∈N\T

φi(S∪ (N \ T), v) for all S ⊆ T .

Besides the consistency approach, in the same paper, Hart and Mas-Colell
[31] gave another characterization for the Shapley value by means of a po-
tential function. They call function P : G → R a potential, if for every game
〈N, v〉 ∈ G, P(∅, v) = 0 and ∑

i∈N
DiP(N, v) = v(N),
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where DiP(N, v) = P(N, v) − P(N \ {i}, v). Thus P is a potential if the gradient
DP(N, v) = (DiP(N, v))i∈N is always efficient. It is proved that, DP(N, v) =
Sh(N, v) for all i ∈ N, all v ∈ GN holds for the potential P, which is uniquely
determined by

P(N, v) =
∑
S⊆N

pns−1v(S).

There are many other characterizations for the Shapley value in the literature
besides those approaches we mentioned here. For further discussions and
applications of the Shapley value see [91].

1.3.3 The Weber Set

For any game 〈N, v〉, denote by ΠN the set of all permutations π : N → N

on the player set N. Given a permutation π ∈ ΠN, then π assigns to every
player i ∈ N a rank number π(i). Denote by πi the set of predecessors of i
according to π, i.e., πi = {j ∈ N | π(j) 6 π(i)}. Then the marginal contribution
vector mπ(v) ∈ RN of a game 〈N, v〉 with respect to the permutation π ∈ ΠN

is defined by

mπi (v) = v(π
i) − v(πi \ {i}) for all i ∈ N.

Let {rπ | π ∈ ΠN} be the set of probability distributions, where rπ > 0

for all π ∈ ΠN, and
∑
π∈ΠN rπ = 1. The random order value φr(N, v) ∈

RN of a game 〈N, v〉 is defined as the convex combination of the marginal
contribution vectors with respect to a probability distribution, that is,

φri(N, v) =
∑
π∈ΠN

rπ ·mπi for all i ∈ N.

Weber [90] proved that, the random order value can be axiomatized by lin-
earity, efficiency, null player property and monotonicity. In particular, the
Shapley value equals the average of the marginal contribution vectors over
all permutations, i.e., for any 〈N, v〉,

Shi(N, v) =
1

n!

∑
π∈ΠN

mπi (v) for all i ∈ N.
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Weber [90] defined the Weber Set W(v) of a game 〈N, v〉 as the collection of
all random order values, which can also be regarded as the convex hull of
all marginal contribution vectors as follows:

W(v) = Conv{mπ | π ∈ ΠN}. (1.10)

The Weber Set is always nonempty. Moreover, Derks [11] proved the follow-
ing relation for the Weber Set and the Core (see definition 1.8):

C(v) ⊆W(v) for any game 〈N, v〉. (1.11)

Shapley [77] and Ichiishi [33] proved that, the equality holds in (1.11) if and
only if game 〈N, v〉 is convex (see Definition 1.4).

1.3.4 The Least Square value

Consider a game 〈N, v〉 ∈ G, and let x ∈ RN be an efficient payoff vec-
tor. Then the excess of S with respect to x in the game 〈N, v〉 is defined by
e(S, x) := v(S) − x(S). Note that the negative (positive) excess e(S, x) can be
regarded as a measure of the (dis)satisfaction by coalition S if payoff vector
x was suggested as the final payoff. The greater e(S, x), the more ill-treated
S would feel.

In order to select an efficient payoff vector for which the resulting excess
is closest to the average excess under the least square criterion, Ruiz, Va-
lenciano and Zarzuelo [68] defined the least square prenucleolus, denoted by
LSν∗, which is the solution of the following optimization problem for any
game 〈N, v〉:

min
∑
S⊆N

(e(S, x) − ē(v, x))2 s.t.
∑
i∈N

xi = v(N).

Here ē(v, x) :=
∑
S⊆N e(S, x)/(2n − 1) is the average excess at x. The least

square prenucleoclus LSν∗(N, v) is given by the formula (see [68]):

LSν∗i (N, v) =
v(N)

n
+

1

n · 2n−2

∑
S$N,
S3i

(n− s) · v(S) −
∑
S⊆N,
S 63i

s · v(S)

 for all i ∈ N.

Later Ruiz, Valenciano and Zarzuelo [69] extended this value, by consider-
ing the same optimization problem but allowing different weights for coali-



14 introduction

tions Swith different sizes. Letmn = (mns )
n
s=1 be a collection of nonnegative

weights only indexed by the size of coalitions. The optimal solution of the
following optimization problem

min
∑
S⊆N

mns (e(S, x) − ē(v, x))2 s.t.
∑
i∈N

xi = v(N),

is called the least square value with respect to the collection mn. Denote by
LSm the least square value. Then the formula for LSm of game 〈N, v〉 is

LSmi (N, v) =
v(N)

n
+
1

nσ

∑
S$N,
S3i

(n− s)mns v(S) −
∑
S⊆N,
S 63i

smns v(S)

 for all i ∈ N,

where σ =
∑n−1
s=1

(
n−2
s−1

)
mns . Ruiz, Valenciano and Zarzuelo [69] proved

that the least square value is the unique value satisfying linearity, efficiency,
symmetry, inessential game property and coalitional monotonicity. Particu-
larly the Shapley value belongs to the the class of least square values (let
mns = (s− 1)!(n− s− 1)!/n! for all 1 6 s 6 n− 1).

1.3.5 The ELS value

The ELS value here means the class of values on GN satisfying efficiency,
linearity and symmetry. Since additivity can be deduced from linearity, and
since additivity and linearity are equivalent for continuous values, the Shap-
ley value clearly belongs to this class of values. The least square value is also
a special case of the ELS value. The ELS value was firstly characterized by
Ruiz, Valenciano and Zarzuelo [69] in the following way: A value Φ on GN

satisfies efficiency, linearity and symmetry if and only if there exists numbers
ρs ∈ R (s = 1, 2, . . . ,n− 1) such that for any v ∈ GN,

Φi(N, v) =
v(N)

n
+
∑
S$N,
S3i

ρs ·
v(S)

s
−
∑
S⊆N
S 63i

ρs ·
v(S)

n− s
for all i ∈ N. (1.12)
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This characterization of the ELS value is based on the following basis for the
games space GN: With every coalition T ⊆ N, there is associated its unity
game 〈N, eT 〉 defined by

eT (S) =

1 if T = S;

0 otherwise,
for all S ⊆ N.

Clearly any game 〈N, v〉 can be represented as a linear combination of the
unity games 〈N, eT 〉, T ⊆ N, T 6= ∅, in the following way:

v =
∑
T⊆N,
T 6=∅

v(T) · eT .

Driessen [17, 15] gave the following characterization for the ELS value:
A value Φ on GN satisfies efficiency, linearity and symmetry if and only if
there exists a (unique) collection of constants B = {bns | n ∈ N \ {0, 1}, s =

1, 2, . . . ,n} with bnn = 1 such that, for every n-person game 〈N, v〉 with at
least two players,

Φi(N, v) =
∑

S⊆N\{i}

pns · (bns+1 · v(S∪ {i}) − b
n
s · v(S)) for all i ∈ N. (1.13)

In fact it can be verified by straightforward computations, that the expression
on the right hand side of (1.13) agrees with the one on the right hand side of
(1.12) by letting bns = (s!(n− s)!/n!) · ρs for all s ∈ {1, 2, . . . ,n− 1}. Whenever
bns = 1 for all s ∈ {1, 2, . . . ,n}, the expression on the right hand side of (1.13)
reduces to the Shapley value payoff (1.7) of player i in the n-person game
〈N, v〉 itself.

In the following, we list some commonly used values (besides the Shapley
value) that belongs to the class of ELS values. For each value, the collection
of real numbers bns for all 1 6 s 6 n will also be given.

Example 1.6. The so-called Solidarity value [59] Sol(N, v) of a game 〈N, v〉 is
defined by:

Soli(N, v) =
∑
S⊆N,
S3i

pns−1 ·
1

s

∑
j∈S

(v(S) − v(S \ {j})) for all i ∈ N. (1.14)

The Solidarity value is derived by using an average marginal contribution, instead of
the individual marginal contribution as in the Shapley value. Sometimes, it happens
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that the Solidarity value belongs to the core of a game while the Shapley value does
not. One can rewrite the formula of the Solidarity value (1.14) in the following way:

Soli(N, v) =
v(N)

n
+
∑

S$N\{i}

pns ·
v(S∪ {i})
s+ 2

−
∑

S⊆N\{i}

pns ·
v(S)

s+ 1
.

Then the corresponding collection of scaling constants B = {bns | 1 6 s 6 n,n > 2}
in (1.13) is given by bns = 1/(s+ 1) for all 1 6 s 6 n− 1 and bnn = 1.

The equal surplus solution, also called the CIS-value, is introduced by
Driessen and Funaki [16] in the following way:

Example 1.7. The CIS-value CIS(N, v) of any game 〈N, v〉 is defined by:

CISi(N, v) = v({i}) +
1

n

v(N) −
∑
j∈N

v({j})

 for all i ∈ N.

It is easy to prove the efficiency, linearity and symmetry of the CIS-value. Moreover,
we obtain the CIS-value if in (1.13) we choose bn1 = n− 1, bnn = 1 and bns = 0 for
all 2 6 s 6 n− 1.

Consider the dual game 〈N, v∗〉 of game 〈N, v〉, which is the game that
assigns to each coalition S ⊆ N the worth that is lost by the grand coalition
N if coalition S leaves N, i.e.,

v∗(S) = v(N) − v(N \ S) for all S ⊆ N.

Example 1.8. The egalitarian non-separable contribution value [50], also called the
ENSC-value, assigns to every game 〈N, v〉 the CIS-value of its dual game, i.e.,

ENSCi(N, v) = CISi(N, v∗)

= v(N) − v(N \ {i}) +
1

n

v(N) −
∑
j∈N

(v(N) − v(N \ {j}))

 ,

for all i ∈ N. Thus the ENSC-value assigns to every player in a game its marginal
contribution to the grand coalition and distributes the reminder equally among the
players. Compared with (1.13), we derive bnn−1 = n− 1, bnn = 1 and bns = 0 for
all 1 6 s 6 n− 2 for the ENSC-value.

The class of equal surplus sharing solutions consisting of all convex com-
binations of the CIS-value, the ENSC-value, and the equal division solution
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(each player receives equally a fraction of the worth of the grand coalition)
is discussed in van den Brink and Funaki [84]. It is easy to see that the class
of equal surplus sharing solutions is a subclass of the ELS values.

Joosten [34] introduced a class of solutions that are obtained as convex
combinations of the Shapley value of the form (1.7) and the equal division
solution:

Example 1.9. For every α ∈ [0, 1], the α-egalitarian Shapley value φα(N, v) of a
game 〈N, v〉 is defined by:

φαi (N, v) = α · Shi(N, v) + (1−α) · v(N)

n
for all i ∈ N. (1.15)

This value is regarded as a trade off between marginalism and egalitarianism. Clearly
the α-egalitarian Shapley value satisfies efficiency, linearity and symmetry, and the
corresponding collection of scaling constants in (1.13) is given by bns = α for all
1 6 s 6 n− 1 and bnn = 1.

Instead of the equal division solution, the so-called generalized consensus
value [36] is defined as the convex combination of the Shapley value and the
CIS-value. Hence this class of values also belongs to the class of ELS values.
Malawski [45] introduced a so-called procedural value, which is determined
by an underlying procedure of sharing marginal contributions to coalitions
formed by players joining in random order. The restriction is that, players
can only share their marginal contributions with their predecessors in the
ordering. The set of all resulting values is proved to satisfy the efficiency,
linearity and symmetry.

Nembua and Andjiga [57] analyzed the ELS value and its relation with
the Shapley value as well as other well-known values. Recently Nembua [56]
gave another interpretation for the ELS value. For any non-empty coalition
S ⊆ N, all i ∈ S and any fixed v ∈ GN, Nembua defined a so-called quantity
as follows:

A
θ(s)
i (S) = θ(s) · (v(S) − v(S \ {i})) + 1− θ(s)

s− 1
·
∑

j∈S\{i}
(v(S) − v(S \ {j})),

if s > 1; and Aθ(s)i (S) = θ(s) · v({i}) if s = 1. Then it is proved that a value
Φ on GN satisfies the efficiency, linearity and symmetry if and only if there
exists a (unique) collection of constants θ(s)ns=1 with θ(1) = 1 such that,

Φi(N, v) =
∑
S⊆N,
S3i

pns−1 ·A
θ(s)
i (S) for all i ∈ N. (1.16)
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In other words, the ELS value can be seen as a procedure to distribute the
marginal contribution of the incoming player i among this player and the
original members of a coalition S.

Nembua [56] mentioned an interesting observation that could be made
from (1.16) concerning the null player axiom. A player i ∈ N is considered as
a θ-A null player in the game 〈N, v〉 if for any coalition S 3 i, it holds Aθ(s)i =

0. A value φN on G satisfies the θ-A null player property if φi(N, v) = 0

whenever i is a θ-A null player in the game 〈N, v〉. Clearly if θ(s) = 1 for
all 1 6 s 6 n, we obtain the null player property of the Shapley value,
and if θ(s) = 1/s for all 1 6 s 6 n, we obtain the null player property of
the Solidarity value. In fact, after some simple calculations we can derive a
relationship between the θ and b sequences: θ(s) = bns−1 for all 2 6 s 6 n.

1.4 outline of the thesis

In this introductory chapter, the background of game theory and basic def-
initions in cooperative game theory are given. All work we will do in the
following chapters concern the cooperative game with transferable utility,
also called TU game. Chapter 2 focuses on the class of values satisfying effi-
ciency, linearity and symmetry in the classical game space. We call this class
of values the ELS value. In Chapter 3 and Chapter 4, instead of the classi-
cal game space, we consider a generalized game space. The feature of the
generalized model is that, the order of players entering into the game affects
the worth of coalitions. We characterize the generalized Shapley value, the
so-called weighted-position value, the generalized ELS value, the general-
ized Core and the generalized Weber Set separately, in the generalized game
space. Chapter 5 focuses on strictly positive games, such that the payoffs
to players are treated in a multiplicative way, instead of the usual additive
way. In this multiplicative model, the MEMS value, that is the class of values
satisfying multiplicative efficiency, multiplicativity and symmetry is studied.
We also give characterizations for the multiplicative Shapley value, and the
multiplicative Least Square value. Conclusions are given in Chapter 6.



2
E L S VA L U E I N T H E C L A S S I C A L M O D E L

ABSTRACT - This chapter treats a special class of values satisfying ef-
ficiency, linearity and symmetry, in the classical game space. We call this
class of values ELS values. The well-known Shapley value as well as the
Solidarity value, belong to the ELS values. We characterize the ELS value
by means of a potential approach, and then axiomatize this value using two
different groups of properties. The first contains Sobolev consistency and λ-
standardness on two-person games, and the second group contains modified
strong monotonicity, efficiency and symmetry.

2.1 modified potential representation

The potential approach is a successful tool in physics. Daniel Bernoulli (1738)
was the first to introduce the idea that a conservative force can be derived by
a potential in Hydrodynamics. An illustrative example is the gravitational
vector field, which represents the gravitational force acting on a particle. It
is a function of its position in the space, i.e. f = f(~r) = f(x,y, z). The work
W done by moving a particle continuously from position A to B through
the path σ is the integral of f(~r) on σ, i.e., W =

∫
σ f(~r)d~r. The gravitational

field is conservative in the sense that it is path independent. But a field is
conservative if there exists a continuous differentiable (potential) function P,
such that W = −

∫
σ∇Pd~r, or equivalently −∇P(~r) = f(~r). There exist several

characterizations of a conservative vector field. Surprisingly, the successful
concept of the potential in physics was carried over to cooperative game
theory in the late eighties.

Concerning TU games, Hart and Mas-Colell [31] were the first to define
the potential in cooperative game theory, such that the marginal contribution
of all players according to the potential function is efficient. Thus, the poten-
tial answers one important question in the field of cooperative game theory:
how to allocate payoffs among all players, by a both feasible and efficient
function (a player gets exactly his marginal contribution to the grand coali-
tion). Dubey, Neyman and Weber [19] showed that the semivalues, which
do not satisfy efficiency, also can be obtained by an associated potential.

19
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Driessen and Radzik [17] proved that the ELS value (see Section 1.3.5 for
detail) admits a pseudo-potential representation. Ortmann [61] clarified sev-
eral analogies between the potential concepts in the cooperative game theory
(without the efficiency constraint) and physics. In addition, Calvo and Santos
[9] found that, any value that admits a potential representation is equivalent
to the Shapley value in a modified game.

2.1.1 Motivation

Let us note that different from physics, in the game theory concept of a po-
tential, we can define the gradient in different ways. So in what follows, the
definition of the potential P depends on the definition of the gradient DiP.
However since we deal with ELS values in this section, we always assume
that the gradient is efficient:∑

i∈N
DiP(N, v) = v(N) for all v ∈ G.

By defining the gradient by DiP(N, v) = P(N, v) − P(N \ {i}, v), it appears
that the potential defined by

P(N, v) =
∑
S⊆N

pns−1 · v(S), (2.1)

becomes just the potential of the Shapley value, i.e., Shi(N, v) = DiP(N, v)
for all i ∈ N. The next theorem states that the definition of the gradient as in
Section 1.3.2 together with the efficiency condition uniquely determines this
potential function of the Shapley value.

Theorem 2.1. [31] There exist a unique potential function P : G → R, such that
for every game 〈N, v〉, the resulting payoff vector (DiP(N, v))i∈N coincides with
the Shapley value of the game. Moreover, the potential P(N, v) of any game 〈N, v〉 is
uniquely determined by the relation

∑
i∈NDiP(N, v) = v(N) applied only to the

game and its subgames (i.e., to 〈S, v〉 for all S ⊆ N).

In view of this theorem, if we wish to relate another value different from
the Shapley value to a potential, we have to modify the gradient. Consider
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for example the egalitarian non-separable contribution value [50], denoted
by ENSC, which is defined by: for any v ∈ GN,

ENSCi(N, v) = v(N) − v(N \ {i}) +
1

n

v(N) −
∑
j∈N

(v(N) − v(N \ {j}))

 ,

for all i ∈ N. How should the gradient be defined in order to obtain a
potential associated with the ENSC value? If we simply let Q(N, v) = v(N),
then for any i ∈ N,

ENSCi(N, v) =
1

n
Q(N, v) −Q(N \ {i}, v) +

1

n

∑
j∈N

Q(N \ {j}, v).

So for the ENSC value, one can define a special gradient DiQ(N, v) equal
to the right hand side of the above equation. In this way both DiQ(N, v) =
ENSCi(N, v) for all i ∈ N and

∑
i∈NDiQ(N, v) = v(N) hold simultaneously.

Then the natural question arises whether for any efficient value, it is possible
to find an appropriate gradient and potential, such that the gradient is effi-
cient and equals the selected value? In the following sections we will focus
on this problem, with respect to a special class of values–the ELS value.

2.1.2 Potential and the modified gradient

In order to define the gradient and potential, we use three items to describe
a player’s gain from participating in a game 〈N, v〉. (To distinguish from the
potential function P defined by Hart and Mas-Colell [31], we will use Q to
denote the new potential.) For any game 〈N, v〉, firstly player i ∈ N receives
some share of the solution Q(N, v) for participating in the game; secondly
players different from i will contribute some efforts to the game according to
Q(N, v), so we remove what other players would gain. In this way we take
−Q(N \ {i}, v) as well as the average sum −

∑
j∈NQ(N \ {j}, v)/n into con-

sideration, and distinguish each part by taking into account different shares,
assuming symmetry with respect to the size of the player set. By choos-
ing weights for these three parts given by three sequences of real numbers
α = (αk)k∈N, β = (βk)k∈N, γ = (γk)k∈N, we define:
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Definition 2.1. A function Q : G → R is called a potential function (associated
with any three sequences α,β,γ of real numbers), if Q(∅, v) = 0 and for any game
〈N, v〉, ∑

i∈N
DiQ(N, v) = v(N). (2.2)

The i-th component DiQ : G → R of the modified gradient DQ = (DiQ)i∈N is
given by

DiQ(N, v) = αnQ(N, v) −βnQ(N \ {i}, v) −
γn

n

∑
j∈N

Q(N \ {j}, v). (2.3)

For 1-person games, the efficiency condition (2.2) would reduce to
α1Q(N, v) = v(N). In order to achieve Q(N, v) = v(N) in 1-person games,
we must have α1 = 1. In addition, we assume αk 6= 0 for all k > 2 to
make sure that the fraction of the potential Q(N, v) for any n-person game
〈N, v〉 does not vanish. Moreover in the degenerated case βn = 0, the mod-
ified gradient DiQ(N, v) is the same for all i ∈ N, and imposing the effi-
ciency property (2.2), we would obtain the egalitarianism rule defined by
DiQ(N, v) = v(N)/n for all i ∈ N. Hence in the following sections we tacitly
assume βn 6= 0.

Definition 2.2. A value φ on GN is said to have a modified potential representation,
if there exist three sequences α = (αk)k∈N, β = (βk)k∈N, γ = (γk)k∈N of real
numbers satisfying α1 = 1 and αk 6= 0 for all k > 2, as well as a potential function
Q : G→ R such that with the gradient (2.3) it holds, φi(N, v) = DiQ(N, v) for all
v ∈ GN, all i ∈ N.

Theorem 2.2. If a value φ on GN has a modified potential representation of form
(2.3) (associated with three sequences α,β,γ of real numbers), then

(i) the corresponding potential functionQ : G→ R satisfies the recursive formula

Q(N, v) =
v(N)

n ·αn
+
βn + γn
n ·αn

∑
j∈N

Q(N \ {j}, v) for all v ∈ GN, n > 2.

(2.4)

The potential function Q : G → R satisfying this recursive relationship is
given explicitly by

Q(N, v) =
∑
S⊆N

pns−1q
n
s v(S) for all v ∈ GN, (2.5)
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where qnn = 1/αn and

pns =
s!(n− s− 1)!

n!
for all 1 6 s 6 n− 1; (2.6)

qns =
1

αs

n∏
k=s+1

βk + γk
αk

for all 1 6 s 6 n− 1. (2.7)

(ii) the underlying value φ on GN is (uniquely) determined as follows:

φi(N, v) =
v(N)

n
+βn

∑
S$N\{i}

pns q
n−1
s+1 v(S∪ {i})

−βn
∑

S⊆N\{i}

pns q
n−1
s v(S) for all v ∈ GN, all i ∈ N.

(2.8)

In the proof of Theorem 2.2, the following relationship will be used: for all
1 6 s 6 n− 1,

qns = qn−1s · qnn · (βn + γn) as well as (2.9)

qns = qns+1 · q
s
s · (βs+1 + γs+1), (2.10)

which follows from basic calculus.
Proof of Theorem 2.2. By the definition of the modified gradient (2.3), together
with the efficiency constraint (2.2), we have

v(N) =
∑
i∈N

DiQ(N, v) = nαnQ(N, v) − (βn + γn)
∑
j∈N

Q(N \ {j}, v).

Hence (2.4) holds. Next we check, by substitution, that (2.5) fulfills (2.4).
Since (n− s) · pn−1s−1 = n · pns−1,∑
j∈N

Q(N \ {j}, v) =
∑
j∈N

∑
S⊆N\{j}

pn−1s−1 q
n−1
s v(S)

=
∑
S$N

(n− s)pn−1s−1 q
n−1
s v(S) =

∑
S$N

n · pns−1q
n−1
s v(S).

From this, together with (2.9) we obtain

(βn + γn)
∑
j∈N

Q(N \ {j}, v) =
∑
S$N

n · pns−1q
n
s αnv(S),
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and so,

v(N) + (βn + γn)
∑
j∈N

Q(N \ {j}, v) =
∑
S⊆N

n · pns−1q
n
s αnv(S) = n ·αnQ(N, v).

Thus (2.4) also holds. By substitution of the potential Q of the form (2.5) into
the modified potential representation (2.3), we obtain for all v ∈ G and all
i ∈ N, the following:

(DiQ)(N, v) = αnQ(N, v) −βnQ(N \ {i}, v) −
γn

n

∑
j∈N

Q(N \ {j}, v)

=αn
∑
S⊆N

pns−1q
n
s v(S) −βn

∑
S⊆N\{i}

pn−1s−1 q
n−1
s v(S) −

γn

n

∑
S$N

npns−1q
n−1
s v(S).

We now simplify the sum of the first and the third terms in the latter equality:

αn
∑
S⊆N

pns−1q
n
s v(S) −

γn

n

∑
S$N

npns−1q
n−1
s v(S)

=
v(N)

n
+αn

∑
S$N

pns−1q
n
s v(S) − γn

∑
S$N

pns−1q
n−1
s v(S)

=
v(N)

n
+ (βn + γn)

∑
S$N

pns−1q
n−1
s v(S) − γn

∑
S$N

pns−1q
n−1
s v(S)

=
v(N)

n
+βn

∑
S$N

pns−1q
n−1
s v(S).

The second equality is due to qnn = 1/αn and (2.9). If we distinguish between
the cases whether coalition S, S $ N, containing player i or not, then

βn
∑
S$N

pns−1q
n−1
s v(S) = βn

∑
S$N,
S3i

+
∑
S$N,
S 63i

pns−1qn−1s v(S)

=βn
∑

S$N\{i}

pns q
n−1
s+1 v(S∪ {i}) +βn

∑
S⊆N\{i}

pns−1q
n−1
s v(S).

Hence we have

(DiQ)(N, v) =
v(N)

n
−βn

∑
S⊆N\{i}

pn−1s−1 q
n−1
s v(S)
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+βn
∑

S$N\{i}

pns q
n−1
s+1 v(S∪ {i}) +βn

∑
S⊆N\{i}

pns−1q
n−1
s v(S)

=
v(N)

n
+βn

∑
S$N\{i}

pns q
n−1
s+1 v(S∪ {i}) −βn

∑
S⊆N\{i}

pns q
n−1
s v(S).

The last equality is due to the relationship pn−1s−1 − pns−1 = pns for all 1 6 s 6
n− 1. So (2.8) holds. This completes the proof of Theorem 2.2.

We next discuss the potential defined by Joosten [34, 35], and compare it
with our results.

Definition 2.3. [34, 35] Let a,b ∈ RN, α ∈ R satisfying
∑
i∈S ai 6= 0 for all

non-empty S ⊆ N. Then the (a,b,α)-potential is the unique map Pa,b,α : G → R

given by Pa,b,α(∅, v) = 0, and∑
i∈N

Da,b,α
i P(N, v) = v(N),

where the (a,b,α)-gradient Da,b,αP = (Da,b,α
i P)i∈N is defined by

Da,b,α
i P(N, v) = aiPa,b,α(N, v) − biPa,b,α(N \ {i}, v) +α

v(N)

n
, (2.11)

for all 〈N, v〉 ∈ G with n > 2.

The value ψa,b,α on G satisfying ψa,b,α(N, v) = Da,b,αP(N, v) for all
〈N, v〉 ∈ G is called the linear-potential value. It is proved by Joosten [34] that
the weighted Shapley value [74, 37], the α-egalitarian Shapley values [34, 86],
the discounted Shapley values [34, 96] and the α-egalitarian weighted Shap-
ley values [35], all belongs to the class of linear-potential values.

Compare the (a,b,α)-gradient of the form (2.11) with our gradient of the
form (2.3). For a given game, not only the way to define the gradient (i.e.,
the two formulas) are different. The main difference is that: the sequences
α,β,γ in (2.3) are not with respect to players as (a,b) in (2.11), but according
to the cardinality of the player set. In this way, the gradient of the form (2.3)
can only be used to characterize symmetric values (see Section 1.3.1 (vi)),
while the (a,b,α)-gradient of the form (2.11) can be used to characterize
both symmetric or asymmetric values1.

1 Asymmetric value means the value do not satisfy symmetry.
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2.1.3 Modified potential representation for the ELS value

Recall the ELS value introduced in Section 1.3.5. For further discussions, we
use the formula given by Driessen and Radzik [17] in the following way:

Theorem 2.3. [17, 15] A value Φ on GN satisfies the efficiency, linearity and sym-
metry if and only if there exists a (unique) collection of constants, B = {bns | n ∈
N \ {0, 1}, s = 1, 2, . . . ,n} with bnn = 1, such that, for every game 〈N, v〉 with
n > 2,

Φi(N, v) =
∑

S⊆N\{i}

pns · (bns+1 · v(S∪ {i}) − b
n
s · v(S)) for all i ∈ N. (2.12)

By interpreting formula (2.8) as a special case of the formula (2.12), namely
with bns = βn · qn−1s for all 1 6 s 6 n− 1 and qnn = 1/αn, we conclude that
any value which has a modified potential representation belongs to the class
of values satisfying efficiency, linearity and symmetry (ELS). Whether or not
such an ELS value admits a modified potential representation turns out to
depend on two simple, but important conditions concerning the correspond-
ing collection of real numbers bns , n > 2, 1 6 s 6 n.

Theorem 2.4. An ELS value Φ on GN has a modified potential representation
of the form (2.3) if and only if the corresponding collection of real numbers bns ,
n > 2, 1 6 s 6 n in (2.12), satisfies the following two conditions:

(C1) If bns = 0, then also bnt = 0 for all 1 6 t 6 s;

(C2) If bns−1 6= 0, then the quotient bns /bns−1 is independent of n.

In case (C1) and (C2) hold for the value Φ of the form (2.12), the potential represen-
tation of Φ of the form (2.3) is based on any three sequences α = (αk)k∈N,β =

(βk)k∈N,γ = (γk)k∈N of real numbers satisfying α1 = 1, αk 6= 0 for all k > 2,
as well as

βs+1 = bs+1s ·αs and γs+1 = αs ·

(
bns
bns+1

− bs+1s

)
. (2.13)

Proof. First we show necessity. Recall the relevant system of equations bns =

βn · qn−1s for all 1 6 s 6 n− 1 and qnn = 1/αn (see Theorem 2.2). Firstly by
(2.10), it is clear that, if qns = 0, then also qnt = 0 for all 1 6 t 6 s. Thus, (C1)
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holds. Secondly, to prove (C2), we observe that the quotient bns /bns−1 turns
out to be independent of n since by (2.10)

bns
bns−1

=
qn−1s

qn−1s−1

=
αs−1
βs + γs

provided bns−1 6= 0.

Suppose the value Φ is fixed (so the sequence bns is fixed for all 1 6 s 6 n),
our next goal is to compute the three sequences α,β and γ corresponding
to the modified potential representation for value Φ as far as possible. We
derive α, β and γ sequences based on the relation bns = βnq

n−1
s for all

1 6 s 6 n, where qn−1s is defined by (2.7). The feasible choice s = n −

1 requires bnn−1 = βn · qn−1n−1 or equivalently, βn = bnn−1 · αn−1. That is,
βs+1 = bs+1s ·αs for all s > 1.

From the validity of the obvious relationship (2.10), or equivalently, αs ·
qns = (βs+1 + γs+1) · qns+1, it follows that qns = (βs+1 + γs+1) · qns+1/αs.
Switching from n to n− 1 yields qn−1s = (βs+1+γs+1) ·qn−1s+1 /αs and so, by
multiplying with βn on both sides, we arrive at the equation bns = (βs+1 +

γs+1) · bns+1/αs. Due to the substitution βs+1 = bs+1s · αs, we derive the
equation

bns
bns+1

=
γs+1
αs

+ bs+1s or equivalently γs+1 = αs ·

(
bns
bns+1

− bs+1s

)
.

Now we show sufficiency. We aim to check whether the given proposals
are solutions of the relevant system of equations bns = βn ·qn−1s . From (2.13)
we derive the following:

γs+1 +βs+1 = αs ·
bns
bns+1

or equivalently
γs+1 +βs+1

αs+1
=

αs

αs+1
· b

n
s

bns+1
.

Thus by (2.7),

αs · qn−1s =

n−1∏
k=s+1

βk + γk
αk

=
αs

αn−1
· b

n
s

bnn−1
.

Hence, by applying again (2.13),

βn · qn−1s = bnn−1 ·αn−1 · q
n−1
s = bns .
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In the setting of the Shapley value of the form (1.7), we obtain the follow-
ing: bns = 1, βs+1 = αs, γs+1 = 0, qns = 1/αn for all 1 6 s 6 n− 1, and so,
any potential representation is of the form

Shi(N, v) = αnQ(N, v) −αn−1Q(N \ {i}, v) for all i ∈ N,

where the potential is

Q(N, v) =
1

αn

∑
S⊆N

pns−1v(S).

Here the sequence α = (αk)k∈N can be chosen arbitrarily under the con-
dition α1 = 1 and αk 6= 0 for all k > 2. The simplest choice αn = 1

for all n > 1 yields the potential representation given by Hart and Mas-
Colell [31], that is, Shi(N, v) = P(N, v) − P(N \ {i}, v) for all i ∈ N, where
P(N, v) =

∑
S⊆N p

n
s−1v(S).

Remind the Solidarity value of the form (1.14), which also belongs to the
class of ELS values. According to (2.13), it holds bns = 1/(s + 1), βs+1 =

αs/(s + 1), γs+1 = αs for all 1 6 s 6 n − 1. Hence the Solidarity value
admits a modified potential representation as follows:

Soli(N, v) = αnQ(N, v) −
αn−1
n

Q(N \ {i}, v) −
αn−1
n

∑
j∈N

Q(N \ {j}, v),

for all i ∈ N, and the potential is

Q(N, v) =
n+ 1

αn

∑
S⊆N

pns−1
v(S)

s+ 1
.

Here the sequence α = (αk)k∈N can also be chosen arbitrarily under the
condition α1 = 1 and αk 6= 0 for all k > 2.

2.2 consistency and the els value

In this section we will axiomatize the ELS value by two properties: Sobolev
consistency and λ-standardness on two-person games.
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2.2.1 Motivation

To introduce the concept of consistency, we first look at the following exam-
ple:

Example 2.1. [67] Consider a three-person game 〈{1, 2, 3}, v〉 given in the following
table, the dividends (see formula (1.9)) of coalitions and the potential (see formula
(2.1)) of subgames are given in lines 3 and 4 of this table, respectively. It follows
that,

S ∅ {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}

v(S) 0 1 2 3 5 6 9 15

cS 0 1 2 3 2 2 4 1

P(S, v) 0 1 2 3 4 5 7 1013

Sh({1, 2, 3}, v) = (Sh1({1, 2, 3}, v),Sh2({1, 2, 3}, v),Sh3({1, 2, 3}, v))

= (D1P({1, 2, 3}, v),D2P({1, 2, 3}, v),D3P({1, 2, 3}, v))

=

(
10
1

3
− 7, 10

1

3
− 5, 10

1

3
− 4

)
=

(
3
1

3
, 5
1

3
, 6
1

3

)
;

Sh({1, 2}, v) = (Sh1({1, 2}, v),Sh2({1, 2}, v)) = (4− 2, 4− 1) = (2, 3);

Sh({2, 3}, v) = (Sh2({2, 3}, v),Sh3({2, 3}, v)) = (7− 3, 7− 2) = (4, 5).

Suppose that all players in this game agree on using the Shapley value, and con-
sider one possible coalition {1, 3}. Player 1 and 3 will have 313 + 613 = 923 if they
pool their Shapley value payoffs together. Another way to obtain this amount is to
take the worth of the grand coalition, 15, and to subtract player 2’s payoff, 513 .

Consider {1} as a subcoalition of {1, 3}. Player 1 could form a coalition with player
2 and obtain the worth 5, but he would have to pay player 2 according to the Shapley
value of the game 〈{1, 2}, v〉, which is the vector (2, 3). So player 1 is left with
5 − 3 = 2. Similarly, player 3 could form a coalition with player 2 and obtain
v({2, 3}) = 9 minus the Shapley value payoff for player 2 in the game 〈{2, 3}, v〉,
which is 4. So player 3 is left with 9− 4 = 5.

Thus a reduced game 〈{1, 3}, ṽ〉 has been constructed with ṽ({1}) = 2, ṽ({3}) = 5,
and ṽ({1, 3}) = 923 . The Shapley value of this game is (313 , 613 ). Note that these
payoffs are equal to the Shapley value payoffs in the original game. This is not a
coincidence. The particular way of constructing a reduced game as illustrated here
leaves the Shapley value invariant.
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For any game 〈N, v〉, a subset of players, say T ⊆ N, consider the game
arising among the players in T . The consistency means, in general, the payoff
of players in T should not change or they should have no reason to renego-
tiate, if they apply the same “solution rule” in the reduced game 〈T , ṽ〉 as
in the original game 〈N, v〉. There are many different ways to define the re-
duced game, since different solutions are consistent with respect to different
reduced games2. In this chapter we focus on the reduced game defined by
Sobolev [79]. This reduced game has also been studied by Driessen [13, 14],
and recently by Xu et al. [95].

Definition 2.4. [79] Given any game 〈N, v〉 with n > 2, any player i ∈ N, and
payoff vector x ∈ RN, the corresponding reduced game 〈N \ {i}, vxSh〉 with respect
to x is as follows:

vxSh(S) =
s

n− 1
· (v(S∪ {i}) − xi) +

n− 1− s

n− 1
· v(S) for all S ⊆ N \ {i}.

(2.14)

Note that the worth of any non-empty coalition in the above reduced game
is obtained by a convex combination of the worth of the coalition in the
original game, and the original worth of the coalition together with the single
player minus the payoff xi to the single player i for his participation.

Definition 2.5. A value φ on G is said to possess the Sobolev consistency, if the
following condition is satisfied: for any game 〈N, v〉, and any player i ∈ N,

φj(N \ {i}, vxφ) = φj(N, v) for all j ∈ N \ {i}, where x = φ(N, v).

Sobolev [79] showed that the Shapley value satisfies Sobolev consistency
with respect to the reduced game (2.14). Further, van den Brink et al. [86]
found the α-egalitarian Shapley value defined by Joosten [34] (see (1.15))
also satisfy the Sobolev consistency with respect to the reduced game of the
form (2.14). We will prove, in the next subsection, that the ELS value of the
form (2.12) also satisfies Sobolev consistency, but with respect to another
reduced game.

2 Most of the results can be found in the survey papers [13], [47] and [81].
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2.2.2 Modified reduced game with respect to the ELS value

Remind that, if the two conditions (C1) and (C2) in Theorem 2.4 are satisfied,
by (2.13) the ELS value Φ of the form (2.12) admits the following modified
potential representation: for all v ∈ GN,

Φj(N, v) = αnQ(N, v) −αn−1bnn−1Q(N \ {j}, v)

−
αn−1b

n
n−1

nbnn
(1− bnn)

∑
l∈N

Q(N \ {l}, v) for all j ∈ N,

where the sequence α = (αk)k∈R satisfy α1 = 1 and αk 6= 0 for all k > 2.
Here (see (2.5)),

Q(N, v) =
1

αnbnn

∑
S⊆N

pns−1b
n
s v(S) for all v ∈ GN.

In order to simplify the calculation, we assume that the coefficient bns in
the formula (2.12) is separable, i.e., bns = µn · νs for all 1 6 s 6 n,n > 2,
which means that bns results from a product of two independent sequences
µ = (µk)k∈N and ν = (νk)k∈N, with µ related to n and ν related to s, respec-
tively. For example, consider the Solidarity value of the form (1.14). Then it
holds µk = 1 for all 1 6 k 6 n, νk = 1/(1+ k) for all 1 6 k 6 n− 1 and
νn = 1. In this way we can simplify the modified potential representation
for the ELS value as well as the potential function as follows:

Φj(N, v) = αnQ(N, v) −αn−1µnνn−1Q(N \ {j}, v)

−
αn−1νn−1
nνn

(1− µnνn)
∑
l∈N

Q(N \ {l}, v) for all j ∈ N, (2.15)

with

Q(N, v) =
1

αnνn

∑
S⊆N

pns−1νsv(S). (2.16)

Now we use such a modified potential representation to derive the reduced
game (different from (2.14)) with respect to the ELS value. Later we will get
rid of the “separable” restriction in the reduced game.

Fix game 〈N, v〉 and a player i ∈ N, we now use the following steps to
derive a reduced game 〈N \ {i}, vxΦ〉, to allow Φj(N, v) = Φj(N, vxΦ) for all
j ∈ N \ {i}.
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Step 1: Substituting (2.16) into (2.15). Since

Q(N \ {j}) =
1

αn−1νn−1

∑
S⊆N\{j}

pn−1s−1 νsv(S) for all j ∈ N, and

∑
l∈N

Q(N \ {l}) =
1

αn−1νn−1

∑
S$N

(n− s)pn−1s−1 νsv(S),

after the substitution we have

Φj(N, v) =
v(N)

n
− µn

∑
S⊆N\{j}

pn−1s−1 νsv(S) + µn
∑
S$N

pns−1νsv(S). (2.17)

Step 2: Focus on the second and third terms in the latter equality. Fix a player i ∈ N
and rewrite the summation over coalition S in view of containing or not containing
player i. Then

µn
∑

S⊆N\{j}

pn−1s−1 νsv(S) = µn

 ∑
S⊆N\{j},
S3i

+
∑

S⊆N\{j},
S 63i

pn−1s−1 νsv(S)

=µn
∑

S⊆N\{i,j}

pn−1s νs+1v(S∪ {i}) + µn
∑

S⊆N\{i,j}

pn−1s−1 νsv(S)

=µn−1
∑

S⊆N\{i,j}

pn−2s−1 νs

(
µn

µn−1

νs+1
νs

s

n− 1
v(S∪ {i}) + µn

µn−1

n− s− 1

n− 1
v(S)

)
,

and

µn
∑
S$N

pns−1νsv(S) = µn

∑
S$N,
S3i

+
∑
S$N,
S 63i

pns−1νsv(S)
=
∑

S$N\{i}

pns µnνs+1v(S∪ {i}) +
∑

S⊆N\{i}

pns−1µnνsv(S)

=µn−1
∑

S$N\{i}

pn−1s−1 νs

(
µn

µn−1

νs+1
νs

s

n
v(S∪ {i}) + µn

µn−1

n− s

n
v(S)

)

+
1

n(n− 1)
µnνn−1v(N \ {i}).

Step 3: Split the first item in the latter equality into two summations. Since

s

n
=

s

n− 1
−

s

n(n− 1)
as well as

n− s

n
=
n− s− 1

n− 1
+

s

n(n− 1)
,
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it holds,

µn−1
∑

S$N\{i}

pn−1s−1 νs

(
µn

µn−1

νs+1
νs

s

n
v(S∪ {i}) + µn

µn−1

n− s

n
v(S)

)

=µn−1
∑

S$N\{i}

pn−1s−1 νs

(
µn

µn−1

νs+1
νs

s

n− 1
v(S∪ {i}) + µn

µn−1

n− s− 1

n− 1
v(S)

)

−
µn

n− 1

∑
S$N\{i}

pns (νs+1v(S∪ {i}) − νsv(S)) .

Step 4: Compare the second term in the latter equality with the ELS value of the
form (2.12), provided bns = µnνs for all 1 6 s 6 n. Clearly

µn

n− 1

∑
S$N\{i}

pns (νs+1v(S∪ {i}) − νsv(S))

=
1

n− 1

(
Φi(N, v) −

v(N)

n
+
1

n
µnνn−1v(N \ {i})

)
.

Hence finally we have

Φj(N, v) =
vxΦ(N \ {i})

n− 1

+ µn−1

 ∑
S$N\{i}

pn−1s−1 νsv
x
Φ(S) −

∑
S⊆N\{i,j}

pn−2s−1 νsv
x
Φ(S)

 ,

(2.18)

if we denote vxΦ(N \ {i}) := v(N) − xi and for all S $ N \ {i},

vxΦ(S) :=
µn

µn−1

n− s− 1

n− 1
v(S) +

1

µn−1νs

s

n− 1
(µnνs+1v(S∪ {i}) − xi).

(2.19)

Step 5: Compare (2.18) to (2.17), then (2.18) is just the formula of the ELS value for
player j in the (n− 1)-person reduced game 〈N \ {i}, vxΦ〉. Therefore we have for
fixed i ∈ N,

Φj(N, v) = Φj(N \ {i}, vxΦ) for all j ∈ N \ {i}.

Now we have derived the reduced game with respect to the ELS value of
the form (2.12), provided bns = µn · νs is separable. Based on (2.19), we will
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prove if the separable condition is discarded, a reduced game with respect
to the ELS value of the form (2.12) also exists.

Theorem 2.5. The ELS value of the form (2.12) with bns 6= 0 for all 1 6 s 6 n,
satisfies the Sobolev consistency (see Definition 2.5), with respect to the following
reduced game: for any game 〈N, v〉, and any fixed player i ∈ N

vxΦ(S) =

v(N) − xi if S = N \ {i};

1

bn−1s

[
n−s−1
n−1 bns v(S) +

s
n−1 (b

n
s+1v(S∪ {i}) − xi)

]
if S $ N \ {i}.

(2.20)

That is, for any game 〈N, v〉 and a fixed player i ∈ N, when x = Φ(N, v), it holds

Φj(N \ {i}, vxΦ) = Φj(N, v) for all j ∈ N \ {i}.

Proof. Fix i ∈ N. According to (2.12), the ELS value of player j ∈ N \ {i} in
the reduced game 〈N \ {i}, vxΦ〉 is

Φj(N \ {i}, vxΦ) =
∑

S⊆N\{i,j}

pn−1s

(
bn−1s+1 v

x
Φ(S∪ {j}) − bn−1s vxΦ(S)

)
.

Substituting (2.20) into the latter equality, then

Φj(N \ {i}, vxΦ) =
v(N) − xi
n− 1

−

n−3∑
s=0

(
n− 2

s

)
pn−1s

(s+ 1) · xi
n− 1

+

n−2∑
s=0

(
n− 2

s

)
pn−1s

s · xi
n− 1

(2.21)

+
∑

S$N\{i,j}

pn−1s bns+2
s+ 1

n− 1
v(S∪ {i, j}) −

∑
S⊆N\{i,j}

pn−1s bns+1
s

n− 1
v(S∪ {i})

+
∑

S$N\{i,j}

pn−1s bns+1
n− s− 2

n− 1
v(S∪ {j}) −

∑
S⊆N\{i,j}

pn−1s bns
n− s− 1

n− 1
v(S).

It is easy to derive the coefficient of xi in (2.21), which is −1/(n− 1), and

xi =Φi(N, v) =
∑

S⊆N\{i}

pns (b
n
s+1v(S∪ {i}) − b

n
s v(S))

=
∑

S⊆N\{i,j}

pns+1(b
n
s+2v(S∪ {i, j}) − b

n
s+1v(S∪ {j}))

+
∑

S⊆N\{i,j}

pns (b
n
s+1v(S∪ {i}) − b

n
s v(S)).
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Substituting the latter equality for xi back into (2.21) we get

Φj(N \ {i}, vxΦ) =
∑

S⊆N\{i,j}

bns+2v(S∪ {i, j}) ·
(
s+ 1

n− 1
pn−1s −

1

n− 1
pns+1

)

+
∑

S⊆N\{i,j}

bns+1v(S∪ {j}) ·
(
n− s− 2

n− 1
pn−1s +

1

n− 1
pns+1

)

−
∑

S⊆N\{i,j}

bns+1v(S∪ {i}) ·
(

s

n− 1
pn−1s +

1

n− 1
pns

)

−
∑

S⊆N\{i,j}

bns v(S) ·
(
n− s− 1

n− 1
pn−1s −

1

n− 1
pns

)
=
∑

S⊆N\{j}

pns
(
bns+1v(S∪ {j}) − b

n
s v(S)

)
= Φj(N, v).

Until here we have talked about the (n − 1)-person reduced game 〈N \

{i}, vxΦ〉 for all 〈N, v〉, and any fixed player i ∈ N, associated to the ELS value
of the form (2.12). Now we consider a game with one more player deleted,
i.e., the (n− 2)-person reduced game 〈N \ {i, j}, (vxΦ)N\{i,j}〉, for all 〈N, v〉, all
i, j ∈ N, i 6= j. We can achieve such a reduced game by either deleting player
j from the (n − 1)-person reduced game 〈N \ {i}, vxΦ〉, or deleting player i
from the (n− 1)-person reduced game 〈N \ {j}, vxΦ〉. We now show that, both
approaches will yield the same result, which means, the reduced game is
independent of the order of players deleted from the original game.

Fix i, j ∈ N, i 6= j. Consider the (n − 2)-person reduced game 〈N \

{i, j}, (vxΦ)N\{i,j}〉, derived by deleting player j from the reduced game
〈N \ {i}, vxΦ〉. According to (2.20),

(vxΦ)N\{i,j} =
bn−1s

bn−2s

n− s− 2

n− 2
vxΦ(S) +

bn−1s+1

bn−2s

s

n− 2
vxΦ(S∪ {j}) − 1

bn−2s

s

n− 2
xj.

Using again (2.20), this equality is changed to

(vxΦ)N\{i,j} = −
1

bn−2s

s

n− 2
(xj + xi)

+
bns+2

bn−2s

s(s+ 1)

(n− 1)(n− 2)
v(S∪ {i, j}) + bns

bn−2s

(n− s− 1)(n− s− 2)

(n− 1)(n− 2)
v(S)

+
bns+1

bn−2s

s(n− s− 2)

(n− 1)(n− 2)
(v(S∪ {i}) + v(S∪ {j})).
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By a similar statement, the latter equality can also be derived by deleting
player i from the (n− 1)-person reduced game 〈N \ {j}, vxΦ〉. The case that
deleting more that two players can be derived accordingly.

2.2.3 Axiomatization to the ELS value by consistency

To axiomatize the Shapley value on GN, Sobolev [79] used four properties,
namely the substitution property, covariance, efficiency, and Sobolev consis-
tency with respect to the reduced game (2.14). Further in 1991, Driessen [13]
proved that if a value satisfies the substitution property and covariance, then
the value is standard for two-person games. According to Hart and Mas-
Colell [31], a value φ on GN is called standard for two-person games if for all
games 〈{i, j}, v〉 with i 6= j, it holds

φk({i, j}, v) = v({k}) +
1

2
[v({i, j}) − v({i}) − v({j})] for k ∈ {i, j}, (2.22)

i.e., the “surplus” v({i, j}) − v({i}) − v({j}) is equally divided among the two
players. The Shapley value clearly satisfies this property. Later, this property
has been modified, by Yanovskaya and Driessen [96], in such a way that a
coefficient λ is added. More precisely,

Definition 2.6. [96] A value φ on GN is said to be λ-standard for two-person
games (where λ ∈ R) if, for all two-person games 〈{i, j}, v〉, it holds

φk({i, j}, v) = λ · v({k}) +
1

2
[v({i, j}) − λ · v({i}) − λ · v({j})] for k ∈ {i, j}.

(2.23)

So, the λ-standardness of a value with respect to two-person games means
that the value allocates the “surplus” v({i, j}) − λ · v({i}) − λ · v({j}) equally to
the two players i and j after assigning each player k, k ∈ {i, j}, his “weighted
individual worth” λ · v({k}). Joosten [34] proved that the α-egalitarian Shap-
ley value of the form (1.15) is α-standard for two-person games. Further, van
den Brink et al. [86] axiomatized the α-egalitarian Shapley value using the
α-standardness for two-person games and Sobolev consistency. It is easy to
see that the ELS value of the form (2.12) satisfies b21-standardness. In the fol-
lowing we will characterize the ELS value by means of this b21-standardness
property.
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Theorem 2.6. The ELS value of the form (2.12) is the unique value on GN satisfy-
ing b21-standardness and the Sobolev consistency with respect to the reduced game
(2.20).

Proof. We already have seen that the ELS value Φ satisfies these two prop-
erties. Now we show the uniqueness part. Suppose there is another value ψ
on GN also satisfying these two properties, we then prove ψ(N, v) = Φ(N, v)
by induction on n. When n = 2, the equality holds according to the b21-
standardness property. Suppose the equality holds for m, 2 6 m 6 n− 1,
and consider the case n. Fix i ∈ N. Let x = Φ(N, v) and y = ψ(N, v), then by
(2.20), for any S ⊆ N \ {i} it holds

vxΦ(S) =
bns

bn−1s

n− s− 1

n− 1
v(S) +

bns+1

bn−1s

s

n− 1
v(S∪ {i}) − 1

bn−1s

s

n− 1
xi;

v
y
ψ(S) =

bns

bn−1s

n− s− 1

n− 1
v(S) +

bns+1

bn−1s

s

n− 1
v(S∪ {i}) − 1

bn−1s

s

n− 1
yi.

(2.24)

The difference then becomes

vxΦ(S) − vyψ(S) =
1

bn−1s

s

n− 1
(yi − xi) for any S ⊆ N \ {i}.

Since

Φj(N \ {i}, vxΦ) =
∑

S⊆N\{i,j}

pn−1s

[
bn−1s+1 v

x
Φ(S∪ {j}) − bn−1s vxΦ(S)

]
and,

ψj(N \ {i}, vyψ) =
∑

S⊆N\{i,j}

pn−1s

[
bn−1s+1 v

y
ψ(S∪ {j}) − b

n−1
s v

y
ψ(S)

]
,

by substituting (2.24) we have

Φj(N \ {i}, vxΦ) −ψj(N \ {i}, vyψ) =
1

n− 1
(yi − xi).

So, for any j ∈ N \ {i}, by consistency and the induction hypothesis it holds

yj = ψj(N, v) = ψj(N \ {i}, vyψ) = Φj(N \ {i}, vxΦ)

= ψj(N \ {i}, vyψ) +
1

n− 1
(yi − xi) = Φj(N \ {i}, vxΦ) +

1

n− 1
(yi − xi)

= Φj(N, v) +
1

n− 1
(yi − xi) = xj +

1

n− 1
(yi − xi),
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which gives

xj − yj =
1

n− 1
(yj − xj) for all j ∈ N \ {i}.

Since n > 3 we have xi = yi.

Since the α-egalitarian Shapley value belongs to the class of ELS val-
ues, this axiomatization generalizes the result that, the α-egalitarian Shap-
ley value is the unique value on G satisfying α-standardness on two-person
games and Sobolev consistency (see [86]).

2.3 B-strong monotonicity and the els value

We already mentioned in Section 1.3.2 that, Young [97] presented an axiom-
atization for the Shapley value using strong monotonicity (see Section 1.3.1,
property (xiv)), together with efficiency and symmetry. Inspired by his ap-
proach, we will explore in the following, a way to modify the strong mono-
tonicity, to allow an axiomatization for the ELS value by using the modified
strong monotonicity. The uniqueness proof will proceed under a new basis
associated with the ELS value, which we will study in the next subsection.

2.3.1 New basis associated with the ELS value

Remind the unanimity game introduced in Chapter 1: for any T ⊆ N, the
unanimity game 〈N,uT 〉 is defined by uT (S) = 1 if T ⊆ S, and uT (S) = 0

otherwise, for all S ⊆ N. The collection of unanimity games {uT | T ⊆ N, T 6=
∅} constitutes a basis of the game space GN, since for any v ∈ GN,

v =
∑
T⊆N,
T 6=∅

cTuT with cT =
∑
R⊆T

(−1)t−rv(R).

For the Shapley value, it holds Shi(N,uT ) = 1/t if i ∈ T , and Shi(N,uT ) = 0
if i 6∈ T . For any T ⊆ N, consider now a slightly changed unanimity game
〈N,uShT 〉, given by uShT = t · uT . Then the collection {uShT | T ⊆ N, T 6= ∅} is
also a basis of GN, since any v ∈ GN is given by

v =
∑
T⊆N,
T 6=∅

cShT uShT with cShT =
1

t
cT .
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Moreover for fixed T ⊆ N, we have Shi(N,uShT ) = 1 if i ∈ T , and
Shi(N,uShT ) = 0 if i 6∈ T . Having in mind that the Shapley value of player i
in the game 〈N,uShT 〉 is either 1 or 0, depending on i ∈ T or not, we define
in the following, a basis of GN associated with the ELS value, and later we
will show that in the new game, the ELS value is also either 1 or 0.

Definition 2.7. A basis of the space GN associated with the ELS value of the form
(2.12) is given by the collection {〈N,ubT 〉 | T ⊆ N, T 6= ∅}, defined by

ubT (S) =

t/b
n
s if T ⊆ S;

0 otherwise,
for all S ⊆ N, (2.25)

where {bns | 1 6 s 6 n} is a sequence of nonzero numbers satisfying bnn = 1 (as in
(2.12)).

When bns = 1 for all 1 6 s 6 n, which yields the Shapley value, the above
game coincides with uShT . We now show that {〈N,ubT 〉 | T ⊆ N, T 6= ∅} is
indeed a basis of GN.

Lemma 2.1. For any game 〈N, v〉 on G, it holds

v =
∑
T⊆N,
T 6=∅

cbTu
b
T with cbT =

1

t

∑
R⊆T

(−1)t−rbnr v(R). (2.26)

Moreover, the ELS value Φ of the form (2.12) satisfies Φi(N,ubT ) = 1 if i ∈ T , and
Φi(N,ubT ) = 0 if i 6∈ T .

Proof. According to (2.25) and (2.26), it holds for any S ⊆ N,

∑
T⊆N,
T 6=∅

cbTu
b
T (S) =

1

bns

∑
T⊆S,
T 6=∅

t · cbT =
1

bns

∑
T⊆S,
T 6=∅

∑
R⊆T

(−1)t−rbnr v(R)

=
1

bns

∑
R⊆S,
R6=∅

∑
T⊆S,
T⊇R

(−1)t−rbnr v(R)

=
1

bns

∑
R⊆S,
R6=∅

bnr v(R)

s∑
t=r

(
s− r

t− r

)
(−1)t−r

=
1

bns

∑
R⊆S,
R6=∅

bnr v(R)(1− 1)
s−r = v(S).
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Now we check the ELS value for the game 〈N,ubT 〉, T ⊆ N. Fix T ⊆ N, T 6= ∅.
If i 6∈ T , the condition T ⊆ S ∪ {i} is equivalent to T ⊆ S, thus by (2.12),
Φi(N,ubT ) = 0. If i ∈ T , clearly ubT (S) = 0 for all S ⊆ N \ {i}, thus

Φi(N,ubT ) = t
∑

S⊆N\{i},
S⊇T\{i}

pns = t

n−1∑
s=t−1

(
n− t

s− t+ 1

)
pns =

1(
n
t

) n−1∑
s=t−1

(
s

t− 1

)
= 1.

The last equality uses the following combinatorial identity:

n−1∑
s=t−1

(
s

t− 1

)
=

(
n

t

)
for all 1 6 t 6 n.

Clearly the equation above holds for n = 1. Suppose it holds for n = k− 1,
k > 2, then for n = k,

k−1∑
s=t−1

(
s

t− 1

)
=

k−2∑
s=t−1

(
s

t− 1

)
+

(
k− 1

t− 1

)
=

(
k− 1

t

)
+

(
k− 1

t− 1

)
=

(
k

t

)
.

By the linearity of the ELS value, for any game 〈N, v〉,

Φi(N, v) = Φi(N,
∑
T⊆N,
T 6=∅

cbTu
b
T ) =

∑
T⊆N,
T 6=∅

cbTΦi(N,ubT ) =
∑
T⊆N,
T3i

cbT , (2.27)

for all i ∈ N. This result will be used later, in the uniqueness proof of the
axiomatization.

2.3.2 B-strong monotonicity and axiomatization to the ELS value

The strong monotonicity property introduced by Young [97] (see Section
1.3.1, property (xiv)), is modified in the following way:

Definition 2.8. Given a sequence B = {bns | 1 6 s 6 n} of real numbers satisfying
bnn = 1. A value φ on GN is said to satisfy the B-strong monotonicity if for any pair
of games 〈N, v〉, 〈N,w〉 and i ∈ N such that mbi,S(v) > m

b
i,S(w) for all S ⊆ N, it
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holds that φi(N, v) > φi(N,w). Here, the B-marginal contribution is defined by:
for all 〈N, v〉, all S ⊆ N,

mbi,S(v) =

b
n
s v(S) − b

n
s−1v(S \ {i}) if i ∈ S;

bns+1v(S∪ {i}) − b
n
s v(S) if i 6∈ S.

The difference of the B-strong monotonicity compared to the original one,
lies in the definition of the marginal contribution. It is easy to verify that the
ELS value of the form (2.12) satisfies the B-strong monotonicity. The proof
of the following result follows Young’s proof for the Shapley value (see [97]
for detail).

Theorem 2.7. The ELS value of the form (2.12) is the unique value on GN satisfying
efficiency, symmetry and B-strong monotonicity.

Proof. Clearly the ELS value satisfies efficiency, symmetry and B-strong
monotonicity. Now we show the uniqueness part. Suppose there is an an-
other value ψ on GN satisfying these three properties. Note that by the B-
strong monotonicity, for any pair of games 〈N, v〉, 〈N,w〉 and i ∈ N,

mbi,S(v) = m
b
i,S(w) for all S ⊆ N implies ψi(N, v) = ψi(N,w). (2.28)

For any game 〈N, v〉, in view of the relation (2.26), it holds ψi(N, v) =∑
T⊆N,
T 6=∅

cbTψi(N,ubT ) for all i ∈ N. Define I to be the minimum number of

non-zero terms cbT in the expression for v of the form (2.26), the proof pro-
ceeds by induction on I.

If I = 0, it holds

v(S) =
∑
T⊆N

cbTu
b
T (S) = 0 for all S ⊆ N.

Thus mbi,S(v) = 0, and by (2.28), ψi(N, v) = 0 for all i ∈ N. Since Φ(N, v) = 0
for all zero games 〈N, v〉, it follows ψ(N, v) = Φ(N, v) if I = 0.

If I = 1, there exists T ⊆ N such that cbT 6= 0 and v = cbTu
b
T . If i 6∈ T ,

mbi,S(u
b
T ) = 0 for all S ⊆ N, and thus mbi,S(v) = 0 for all S ⊆ N. Then

(2.28) gives ψi(N, v) = 0 = Φi(N, v) for all i 6∈ T . If i, j ∈ T , i 6= j, since
mbi,S(u

b
T ) = mbj,S(u

b
T ), by symmetry we have ψi(N,ubT ) = ψj(N,ubT ). By

efficiency, ∑
i∈T

ψi(N,ubT ) = u
b
T (N) = t.
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Hence ψi(N,ubT ) = 1 = Φi(N,ubT ) for all i ∈ T . Therefore ψ(N, v) = Φ(N, v)
whenever I is 0 or 1.

Assume ψ(N, v) is the ELS value when index is at most I. Let v have index
I+ 1 such that

v =

I+1∑
k=1

cbTku
b
Tk

where all cbTk 6= 0.

Let T =
⋂I+1
k=1 Tk. If i 6∈ T , define the game

w =
∑
Tk3i

cbTku
b
Tk

.

The index of w is at most I and mbi,S(w) = mbi,S(v). By the induction hy-
pothesis and (2.28) it holds ψi(N, v) = Φi(N, v) for all i 6∈ T . If i ∈ T , by
symmetry ψi(N, v) is a constant c. Since the ELS value is also a constant c ′

for all i ∈ T , by efficiency we have c = c ′. This completes the uniqueness
proof.

2.4 conclusion

In this chapter we characterized the ELS value, that is the class of values
satisfying efficiency, linearity and symmetry in the classical game space. In-
spired by the potential approach for the Shapley value introduced by Hart
and Mas-Colell [31], we modified the definition of the gradient, and proved
that the ELS value is the unique value on the classical game space which
admits a modified potential representation under two specific conditions. By
using such a modified potential representation for the ELS value, we derive a
reduced game, such that the ELS value satisfies the Sobolev consistency with
respect to this reduced game. Then the ELS value is axiomatized by Sobolev
consistency, together with a so-called λ-standardness on two-person games
with a fixed λ. Based on Young’s axiomatization [97] for the Shapley value,
we prove that the ELS value is the unique value on the classical game space
satisfying efficiency, symmetry, and a modified strong monotonicity. This
modified strong monotonicity is a generalization of the strong monotonicity
defined by Young [97] for the Shapley value.



3
S H A P L E Y VA L U E I N T H E G E N E R A L I Z E D M O D E L

ABSTRACT - Instead of the classical game space, this chapter focuses
on a generalized game space, in which the order of players entering into the
game affects the worth of coalitions. Inspired by Evans procedure [20] which
produces the Shapley value in the classical game space, we propose a new
procedure which leads to the generalized Shapley value defined by Sanchez
and Bergantinos [70]. Then we axiomatize the generalized Shapley value
using associated consistency, continuity and the inessential game property
in the generalized game space. A matrix approach is applied throughout the
axiomatization.

3.1 introduction to the generalized model

As we discussed in previous chapters, the classical description of a coopera-
tive game among a certain set of players, is a function which assigns to each
group of players a fixed single number, regardless of how players are ordered
in the group. However, to model some economic situations or some special
relationships among players, the earning of a group of players may depend
not only on its members, but also on the sequential ordering of players join-
ing the game. So to make a better approximation to some real life situations,
it may be advantageous to consider games where the so-called characteristic
function is defined on all possible orders in coalitions of players.

Example 3.1. [70] Consider a two-person game, in which player 1 is a seller who
has a product without value for him and player 2 is a buyer who values the product
of player 1 at one unit. Suppose that if the seller is the first who arrives at the market
then he waits for the possible buyers, but if the buyer is the first to arrive, then he
does not wait for the possible sellers. Then the worth of singletons is 0, while the
worths for two-person coalitions are respectively 1 (because the seller arrives first to
the market, he waits until the buyer arrives and he sells the product in x units of
money where 0 6 x 6 1; the seller obtains x units of utility and the buyer 1− x);
and 0 (the buyer arrives first and he leaves the market because there are no seller).

43
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In this game, the worth of a coalition may depend not only on its members, but also
on the sequential ordering of players in such coalition joining the game.

The generalized model is given first by Nowak and Radzik [58]. They re-
defined the efficiency, null player property and strong monotonicity in this
new game space, and axiomatized a generalized Shapley value by using
two groups of (redefined) properties. The first group of properties contains
efficiency, null player property and additivity, and the uniqueness proof fol-
lows the approach given by Shapley [74]. The second group of properties
are efficiency and strong monotonicity, and the proof proceeds according to
the one given by Young [97]. The lack of symmetry compared to the clas-
sical case, comes from the definition of the null player in the null player
property as well as from the marginal contribution in the strong monotonic-
ity. Sanchez and Bergantinos [70] discovered this symmetry problem, and
gave more “suitable” definitions for the null player, symmetric player and
marginal contribution, in the new game space. In this way, a new Shapley
value was characterized, by using these new defined properties. Later by
Sanchez and Bergantinos [71], the Shapley value was generalized to games
with a priori unions in the same way as Owen [64] did for the Shapley value.
Bergantinos and Sanchez also characterized the weighted Shapley value in
the new game space [5], based on the results in the classical game space
given by Shapley [75] as well as Kalai and Samet [37].

In our point of view, the properties used in Sanchez and Bergantinos’ pa-
pers are more fair and attractive, since they considered all possibilities (po-
sitions) how a single player can join into a coalition. We follow the notation
given by Sanchez and Bergantinos [70].

For any subset S ⊆ N, denote by H(S) the set of all orders of players
in S. The element S ′ ∈ H(S) is called an ordered coalition. For notational
convenience, we use S to represent a general coalition with size s regardless
of order and S ′ ∈ H(S) to represent an ordered coalition with the same player
set. Note that H(∅) = ∅ as well as H({i}) = {{i}} for all i ∈ N. Denote by Ω the
set of all ordered coalitions, that is,

Ω = {S ′|S ′ ∈ H(S),S ⊆ N,S 6= ∅}.

Obviously, the total number of ordered coalitions in Ω equals

m :=

n∑
s=1

s!Csn where Csn =
(
n
s

)
= n!
s!(n−s)! for all 1 6 s 6 n. (3.1)
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Definition 3.1. A game in generalized characteristic function form, or a generalized
game, is an ordered pair 〈N, v〉, where N is a non-empty, finite set of players and
v : Ω→ R is a generalized characteristic function that assigns to each S ′ ∈ Ω, the
real-valued worth v(S ′) as the utility obtained by players in S according to the order
S ′, such that v(∅) = 0.

Denote by G ′N the set of all generalized cooperative games with player set
N, and G ′ the set of all generalized cooperative games with arbitrary player
set. A value φ on G ′N is a mapping such that (φi(N, v))i∈N ∈ Rn for all
v ∈ G ′N. The following definition will play an important role in our solution
theory for generalized TU games.

Definition 3.2. Let S ′ ∈ H(S),S $ N be given. A set T’ is called an extension of
S ′ of size t, t > s if a set of t− s players in N \ S is inserted among the players of
S ′ in such a way that the players in S appear in T ′ in the same order as in S ′. We
denote by V(S ′) the set of all extensions of S ′.

As a special case we define an extension T ′ = (S ′, ih) with i 6∈ S, t = s+ 1
as follows. Given player i ∈ N, coalition S ⊆ N\ {i} of size s, ordered coalition
S ′ ∈ H(S), and height h ∈ {1, 2, . . . , s+ 1}, then (S ′, ih) denotes the (s+ 1)-
person ordered coalition with player i inserted in the h-th position, that is, if
S ′ = (i1, . . . , is), then (S ′, i1) = (i, i1, . . . , is); (S ′, is+1) = (i1, . . . , is, i); and
(S ′, ih) = (i1, . . . , ih−1, i, ih, . . . , is) for all 2 6 h 6 s.

Definition 3.3. [70] For any generalized TU game 〈N, v〉, the generalized Shapley
value Sh ′(N, v) = (Sh ′i(N, v))i∈N is given by

Sh ′i(N, v) =
∑

S⊆N\{i}

pns
(s+ 1)!

∑
S ′∈H(S)

s+1∑
h=1

[
v(S ′, ih) − v(S ′)

]
for all i ∈ N.

(3.2)

We can rewrite this value in terms of extensions (see Definition 3.2) in the
following way:

Sh ′i(N, v) =
∑

S⊆N\{i}

pns

∑
S ′∈H(S)

(s!)−1
∑

T ′∈V(S ′),T ′3i,
t=s+1

v(T ′) − v(S ′)

s+ 1
. (3.3)

The difference with the classical case is, that in this new setting, any player
i ∈ N has (s+ 1) ways to join any ordered coalition S ′ of size s, S ′ ∈ H(S),
S ⊆ N \ {i}, yielding various marginal contributions v(T ′) − v(S ′) for all T ′ ∈
V(S ′) containing player i, of size t = s+ 1. The expected payoff to any player
i with respect to the underlying classical probability measure pns is obtained
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through averaging over all the player’s marginal contributions as well as
over all s! possible ordered coalitions with player set S.

Definition 3.4. Let S ′ ∈ H(S),S ⊆ N be given. A set T’ is called a restriction 1 of
S ′ if T ′ ∈ H(T), T ⊆ S, and the order of players in T ′ is in accordance with that in
S ′. We denote by R(S ′) the set of all restrictions of S ′.

In order to explain such a restriction set, we introduce the notion of pre-
decessors and successors. Consider an arbitrary ordered coalition S ′ ∈ Ω,
S ′ = {i1, . . . , ik−1, ik, ik+1, . . . , is}. For any k ∈ {2, . . . , s}, denote the prede-
cessors of ik in S ′ by pre(ik,S ′). For any k ∈ {1, . . . , s− 1}, denote the suc-
cessors of ik in S ′ by suc(ik,S ′). Then pre(ik,S ′) = {i1, . . . ik−1} as well as
suc(ik,S ′) = {ik+1, . . . is}. For any two players i, j ∈ T ′ where T ′ ∈ H(T),
T ⊆ N, the restriction T ′ ∈ R(S ′) means T ⊆ S, and if i ∈ pre(j,S ′) then
i ∈ pre(j, T ′), or if i ∈ suc(j,S ′) then i ∈ suc(j, T ′).

Definition 3.5. [70] A value φ on G ′N satisfies

(i) efficiency, if

∑
i∈N

φi(N, v) =
1

n!

∑
N ′∈H(N)

v(N ′) for any generalized game 〈N, v〉;

(3.4)

(ii) symmetry, if φi(N, v) = φj(N, v) for all symmetric players i and j and any
generalized game 〈N, v〉. Two players i, j ∈ N are symmetric in 〈N, v〉 if for
every ordered coalition S ′ such that S ′ 63 i, j, we have v(S ′, ih) = v(S ′, jh) for
all h ∈ {1, 2, . . . , s+ 1};

(iii) null player property, if φi(N, v) = 0 for every generalized game 〈N, v〉, and
every null player i ∈ N. Player i is called a null player in 〈N, v〉 if for every
ordered coalition S ′ not containing i, we have v(S ′, ih) = v(S ′) for every
h ∈ {1, 2, . . . , s+ 1}.

Denote by v̄(N) the average worth for all permutations N ′ ∈ H(N), i.e.,

v̄(N) =
1

n!

∑
N ′∈H(N)

v(N ′). (3.5)

Then the efficiency is equivalent to
∑
i∈Nφi(N, v) = v̄(N).

1 Sanchez and Bergantinos [70] use the notation T ′ = S ′/T ′ to express the restriction T ′ of S ′.
We change the notation to avoid the possible confusion with the set-minus sign “\”.
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3.2 evans’ consistency and the generalized shapley value

In this section we will provide a procedure, such that the Shapley value of
the generalized game is just the expectation of that procedure. This approach
is based on Evans [20] in the classical game space.

3.2.1 Motivation

In the classical case, Evans [20] introduced the following procedure: given an
n-player cooperative game and a feasible “wage” n-vector. Suppose that the
players in a cooperative game are randomly split into two coalitions, each
with a randomly chosen leader; the two leaders bargain bilaterally and each
pays, out of his share, a wage to each member of his coalition as specified by
the wage vector. More precisely, for an arbitrary cooperative game 〈N, v〉 in
G, the following procedures are done sequentially:

(A) the players in the grand coalition N are randomly split into two coali-
tions, say S and N \ S (S 6= ∅,N);

(B) each coalition generates randomly a leader, say leader i represents S and
leader j represents N \ S, i ∈ S, j ∈ N \ S;

(C) The rule is that each leader pays to each member of his coalition, an
certain part of what he gets in the two-person bargaining process.

A value is said to be consistent with the above procedure if it is equal to the
expected payoff. Under such a consistency condition, Evans proved that the
Shapley value of the form (1.7) is the unique solution, if all randomly chosen
processes are with respect to the uniform distribution, and the two-person
bargaining result is standard according to Hart and Mas-Colell [31]. Remind
that a value φ on G is standard for two-person games, if for an arbitrary
two-person game 〈{i, j}, v〉,

φk({i, j}, v) = v({k}) +
1

2
(v({i, j}) − v({i}) − v({j})) for k ∈ {i, j}. (3.6)

Although Evans’ procedure works well on the classical game space GN, it
is not suitable to characterize a solution on the generalized game space G ′N.
The problem is that, when players are randomly split into two coalitions,
there is no order information about the two subcoalitions. So the leader does
not know what he actually owns to bargain with his opponent. In the fol-
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lowing we will define a generalized procedure, based on Evans’ approach to
characterize the generalized Shapley value of the form (3.3).

3.2.2 Generalization of Evans’ procedure

Following Evans’ procedure, we assume that for a set of fixed players, each
player has the same probability to be chosen as a leader in all possible per-
mutations of the set of players, i.e. for any S ⊆ N, S ′,S ′′ ∈ H(S), the prob-
ability of i to be chosen as a leader in S ′ is the same as that in S ′′, for all
i ∈ S. Remind that, the problem with Evans’ procedure in the generalized
case is the lack of order information for the two partitioned coalitions in
step (A). In order to fix the orders of the two subcoalitions in the two-person
bargaining process, we first choose one permutation N ′ ∈ H(N) with some
probability, then a partition {S ′,N ′ \ S ′} can be chosen based on N ′ where
S ′,N ′ \ S ′ ∈ R(N ′), S ′ ∈ H(S), S $ N and S 6= ∅.

Let θ : G ′ → R2 be the payoff of the two-person bargaining process be-
tween S ′ and N ′ \ S ′, say S ′ gets θN

′
S ′ (v) and N ′ \ S ′ gets θN

′
N ′\S ′(v). Ac-

cording to Evans’ procedure, the leader of each ordered coalition is then
obliged to pay to each member of his coalition a prespecified feasible allo-
cation x = (xk)k∈N. If i is chosen as the leader of S ′, then what he gets
is

θN
′

S ′ (v) −
∑

k∈S\{i}
xk.

Similarly if j is the leader of N ′ \ S ′ then he gets

θN
′

N ′\S ′(v) −
∑

k∈N\(S∪{j})
xk.

Denote by f the probability distribution that determines the choice of the
permutation N ′, the partition of {S ′,N ′ \ S ′}, and which two players are
the leader of S ′ and N ′ \ S ′ respectively. Given the triple (f, θ, x), denote
by Ef (Πi|θ, x) the expected payoff to player i. We now generalize the consis-
tency concept defined by Evans:

Definition 3.6. Given a pair (f, θ), a payoff vector x = (xi)i∈N satisfies Evans’
consistency with respect to (f, θ) if xi = Ef (Πi|θ, x) for i ∈ N and any generalized
game 〈N, v〉.

We assume that the distribution f is uniform. Then the whole procedure
(A)-(C) under the uniform distribution can be described as follows:
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(i) Choose a permutation N ′ from the set H(N) with probability 1/n!;

(ii) Choose the size of the first coalition S ′, with each possible size s ∈
{1, 2, . . . ,n − 1} being equally likely, hence with probability 1/(n − 1).
Suppose s is the chosen size;

(iii) Choose an ordered coalition S ′ of size s in R(N ′). Since the position of
players in N ′ are all fixed, we only need to fix s players with probability
1/Csn. Once S ′ is fixed, its complement N ′ \ S ′ according to N ′ is also
fixed;

(iv) Choose a leader i from S ′ (already fixed in (iii)) with probability 1/s,
and a leader j from its complement N ′ \ S ′ (already fixed in (iii)) with
probability 1/(n− s);

(v) Leader i and j play a two-person bargaining game based on coalition
S ′ and N ′ \ S ′ respectively. Coalition S ′ gets θN

′
S ′ (v) while N ′ \ S ′ gets

θN
′

N ′\S ′(v);

(vi) Leader i gets θN
′

S ′ (v) −
∑
k∈S\{i} xk after assigning each of the mem-

bers of his coalition xk for all k ∈ S ′ \ {i}. Leader j gets θN
′

N ′\S ′(v) −∑
k∈N\(S∪{j}) xk after assigning xk for all k ∈ N \ (S∪ {j}).

According to the above procedure the probability of the choice (N ′,S ′, i) that
player i will find himself leader of coalition S ′ according to N ′ is

1

n!
· 1

n− 1
· 1
Csn
· 1
s
· 2,

and the probability of being a follower in S ′ according to N ′ is

1

n!
· 1

n− 1
· 1
Csn
· s− 1
s
· 2.

Player i could be either in the first coalition or in the second one, hence we
have to add the factor 2 in the probability. Now everything is well-defined
in the generalized case except for θ.

In contrast to the standard two-person bargaining solution (3.6), we give
the following definition:

Definition 3.7. For any two-person generalized game 〈{i, j}, v〉, the generalized
standard bargaining solution φ : G ′ → R2 is defined by

φk({i, j}, v) = v({k}) +
1

2
(v̄({i, j}) − v({i}) − v({j})) for k ∈ {i, j},
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where v̄({i, j}) is defined by (3.5) (given N = {i, j}).

Clearly φ satisfies the efficiency condition (3.4). Hence the solution θ of
the two-person bargaining process between S ′ and N ′ \ S ′ in game 〈N, v〉 is

θN
′

S ′ (v) = v(S
′) +

1

2

(
v̄(N) − v(S ′) − v(N ′ \ S ′)

)
;

θN
′

N ′\S ′(v) = v(N
′ \ S ′) +

1

2

(
v̄(N) − v(N ′ \ S ′) − v(S ′)

)
.

(3.7)

Theorem 3.1. A payoff vector x ∈ Rn satisfies Evans’ consistency with respect to
(f, θ) if and only if x is the generalized Shapley value (3.3).

To prove this statement, we need first the following result:

Lemma 3.1. The generalized Shapley value in Definition 3.3 can be written in the
following form: for any generalized game 〈N, v〉,

Sh ′i(N, v) =
∑
S ′∈Ω,
S ′3i

(s− 1)!(n− s)!
n!

(
v(S ′)

s!
−
v(S ′ \ {i})

(s− 1)!

)
for i ∈ N. (3.8)

Proof. We will show that the value defined by (3.8) satisfies additivity, to-
gether with efficiency, symmetry, null player property (see Definition 3.5).
Since Sanchez and Bergantinos [70] proved that the generalized Shapley
value in Definition 3.3 is the unique value on G ′N satisfying these four prop-
erties, the result follows. Additivity is clear. Denote by φ the value defined
by (3.8). Then

∑
i∈N

φi(N, v) =
∑
i∈N

∑
S ′∈Ω,
S ′3i

(s− 1)!(n− s)!
n!

(
v(S ′)

s!
−
v(S ′ \ {i})

(s− 1)!

)

=
∑
S ′∈Ω

∑
i∈S

(s− 1)!(n− s)!
n!

v(S ′)

s!
−
∑
S ′∈Ω,
s6=n

∑
i 6∈S

s!(n− s− 1)!
n!

v(S ′)

s!

=
∑
S ′∈Ω

s!(n− s)!
n!

v(S ′)

s!
−
∑
S ′∈Ω,
s6=n

s!(n− s)!
n!

v(S ′)

s!
= v̄(N),

proving the efficiency. Now suppose player i is a null player in 〈N, v〉, that
is, v(S ′, ih) = v(S ′) for all S ′ ∈ Ω,S ′ 63 i, h ∈ {1, 2, . . . , s+ 1}. Then we have
φi(N, v) = 0 since ∑

S ′∈Ω,
S ′3i

v(S ′) =
∑
S ′∈Ω,
S ′3i

s · v(S ′ \ {i}).
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In order to explain this equality, we consider a coalition S ⊆ N, S 3 i. Fix
S ′ \ {i} ∈ H(S \ {i}), then (S ′ \ {i}, ih), h ∈ {1, 2, . . . , s} results in s different sets
S ′ ∈ H(S). This proves the null player property.

To establish the symmetry, consider a pair of symmetric players i, j ∈ N,
i 6= j, that is, v(S ′, ih) = v(S ′, jh) for all S ′ ∈ Ω,S ′ 63 i, j, h ∈ {1, 2, . . . , s+ 1}.
We can rewrite the right hand side of (3.8) in the following way:

φi(N, v) =

∑
S ′∈Ω,
S ′3i,j

+
∑
S ′∈Ω,

S ′3i,S ′ 63j

 (s− 1)!(n− s)!
n!

(
v(S ′)

s!
−
v(S ′ \ {i})

(s− 1)!

)

=

∑
S ′∈Ω,
S ′3i,j

+
∑
S ′∈Ω,

S ′3j,S ′ 63i

 (s− 1)!(n− s)!
n!

(
v(S ′)

s!
−
v(S ′ \ {j})

(s− 1)!

)

=φj(N, v).

This proves symmetry.

Proof of Theorem 3.1. Define

Ans :=
1

n!
· 1

n− 1
· 1
Csn

.

According to the procedure (i)-(vi), player i’s expected payoff xi is

xi =
∑

N ′∈H(N)

∑
S ′∈Ω,S ′∈R(N ′),
S ′3i,|S ′|6=n

2Ans ·

1
s

θN ′S ′ (v) − ∑
k∈S\{i}

xk

+
s− 1

s
xi

 .

(3.9)
We first show that x satisfies the efficiency (3.4):

∑
i∈N

xi =
∑

N ′∈H(N)

∑
S ′∈Ω,S ′∈R(N ′),

s6=n,0

∑
i∈S

2Ans ·
[
1

s

(
θN

′
S ′ (v) − x(S)

)
+ xi

]

=
∑

N ′∈H(N)

1

n!

∑
S ′∈Ω,S ′∈R(N ′),

s6=n,0

1

n− 1
· 1
Csn
· 2 · θN

′
S ′ (v).

By substituting the formula for θN
′

S ′ (v) (c.f. (3.7)) we have,

∑
i∈N

xi =
∑

N ′∈H(N)

1

n!

n−1∑
s=1

Csn ·
1

n− 1
· 1
Csn
· 2 · 1

2
· v̄(N) = v̄(N).
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This proves the efficiency. Note that (3.9) is equivalent to

0 =
∑

N ′∈H(N)

∑
S ′∈Ω,S ′∈R(N ′),
S ′3i,|S ′| 6=n

2Ans ·
1

s

(
θN

′
S ′ (v) − x(S)

)
, (3.10)

since

∑
N ′∈H(N)

∑
S ′∈Ω,S ′∈R(N ′),
S ′3i,|S ′| 6=n

2Ans =
∑

N ′∈H(N)

n−1∑
s=1

Cs−1n−1 · 2A
n
s = 1.

We now simplify the formula for xi given by (3.10). Note that x(S) = xi +

x(S \ {i}). Then the coefficient of xi on the right hand side of (3.10) is

−
∑

N ′∈H(N)

∑
S ′∈Ω,S ′∈R(N ′),
S ′3i,|S ′|6=n

2Ans ·
1

s
= −

∑
N ′∈H(N)

n−1∑
s=1

Cs−1n−1 · 2A
n
s ·
1

s
= −

2

n
,

while the part concerning x(S \ {i}) on the right hand side of (3.10) becomes

−
∑

N ′∈H(N)

∑
S ′∈Ω,S ′∈R(N ′),
S ′3i,|S ′|6=n

1

n!
· 1

n− 1
· 1
Csn
· 2 · 1

s
· x(S \ {i})

=−
∑

N ′∈H(N)

∑
j∈N\{i}

xj
∑

S ′∈Ω,S ′∈R(N ′),
S ′3i,j,|S ′|6=n

1

n!
· 1

n− 1
· 1
Csn
· 2 · 1

s

=−
∑

N ′∈H(N)

∑
j∈N\{i}

xj

n−1∑
s=2

Cs−2n−2 ·
1

n!
· 1

n− 1
· 1
Csn
· 2 · 1

s

=−
n− 2

n(n− 1)

∑
j∈N\{i}

xj = −
n− 2

n(n− 1)
(v̄(N) − xi) .

The latter equation is due to the efficiency of x. The only part that is not
treated yet on the right hand side of (3.10) is: (substituting the formula for
θN

′
S ′ (v) in (3.7)),

∑
N ′∈H(N)

∑
S ′∈Ω,S ′∈R(N ′),
S ′3i,|S ′|6=n

1

n!
· 1

n− 1
· 1
Csn
· 2 · 1

s
· θN

′
S ′ (v)

=
∑

N ′∈H(N)

∑
S ′∈Ω,S ′∈R(N ′),
S ′3i,|S ′|6=n

1

n!
· 1

n− 1
· 1
Csn
· 1
s
· v(S ′) (3.11)
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−
∑

N ′∈H(N)

∑
S ′∈Ω,S ′∈R(N ′),
S ′3i,|S ′|6=n

1

n!
· 1

n− 1
· 1
Csn
· 1
s
· v(N ′ \ S ′) (3.12)

+
∑

N ′∈H(N)

∑
S ′∈Ω,S ′∈R(N ′),
S ′3i,|S ′|6=n

1

n!
· 1

n− 1
· 1
Csn
· 1
s
· v̄(N). (3.13)

In is easy to derive that the result of (3.13) is v̄(N)/n. By changing the order
of summations, (3.11) is equivalent to

∑
S ′∈Ω,S ′3i,

s6=n

∑
N ′∈H(N),
N ′∈V(S ′)

Ans ·
1

s
· v(S ′) =

∑
S ′∈Ω,S ′3i,

s6=n

n!
s!
·Ans ·

1

s
· v(S ′)

=
1

n− 1

∑
S ′∈Ω,S ′3i,

s6=n

(s− 1)!(n− s)!
n!

· 1
s!
· v(S ′).

Let T ′ = N ′ \ S ′, then (3.12) becomes

−
∑

N ′∈H(N)

∑
T ′∈Ω,T ′∈R(N ′),
T ′ 63i,|T ′|6=0

1

n!
· 1

n− 1
· 1

Cn−tn

· 1

n− t
· v(T ′)

=−
∑

T ′∈Ω,T ′ 6=∅,
T ′ 63i

∑
N ′∈H(N),
N ′∈V(T ′)

1

n!
· 1

n− 1
· 1

Cn−tn

· 1

n− t
· v(T ′)

=−
1

n− 1

∑
T ′∈Ω,
T ′3i

(t− 1)!(n− t)!
n!

· 1

(t− 1)!
· v(T ′ \ {i}).

Hence (3.10) is equivalent to:

0 =−
2

n
xi −

n− 2

n(n− 1)
(v̄(N) − xi) +

1

n− 1

∑
S ′∈Ω,S ′3i,

s6=n

(s− 1)!(n− s)!
n!

· 1
s!
· v(S ′)

−
1

n− 1

∑
T ′∈Ω,
T ′3i

(t− 1)!(n− t)!
n!

· 1

(t− 1)!
· v(T ′ \ {i}) + v̄(N)

n
.

Solving this equation we have

xi =
∑
S ′∈Ω,
S ′3i

(s− 1)!(n− s)!
n!

·
(
v(S ′)

s!
−
v(S ′ \ {i})

(s− 1)!

)
. (3.14)
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Then, by Lemma 3.1, we find x(N, v) = Sh ′(N, v) for any generalized game
〈N, v〉. �

In fact Theorem 3.1 can be restated as follows, where f (defined above
as the “uniform” distribution over two-configurations for the given game
〈N, v〉) is to be understood now as a function from games to such probability
distributions.

Corollary 3.1. The generalized Shapley value is the unique value on G ′N that is
both consistent with f and standard on two-person games.

3.3 matrix approach to the generalized shapley value

In this section, an axiomatization for the generalized Shapley value is given,
by using associated consistency, continuity and the inessential game prop-
erty. For the uniqueness proof, a matrix approach will be used.

3.3.1 Motivation

In the classical case, Hamiache [25] presented a new axiomatization of the
Shapley value by constructing an associated game. He defined a sequence of
games, where the term of order n, in this sequence, is the associated game
of the term of order (n − 1). It is shown that the sequence converges and
the limit game is inessential. Thus without either additivity or the efficiency
axioms, the Shapley value is characterized by the inessential game property,
associated consistency and continuity. Driessen [15] generalized this asso-
ciated consistency to the ELS values. Notice that the uniqueness proof in
Hamiache [25] as well as in Driessen [15] are very complicated and technical.
Xu et al. [93] and Hamiache [26] respectively developed a matrix approach
for the axiomatization. Later this matrix approach is also applied to the so-
called dual similar associated consistency in Xu et al. [94], and to games with
coalition and communication structures in Hamiache [27]. In the matrix ap-
proach, the diagonalization procedure of a special matrix and the inessential
game property for such a matrix are fundamental tools to prove the conver-
gence of the sequence of repeated associated games as well as to show its
limit game to be inessential.

Instead of the classical Shapley value, we focus on the generalized Shapley
value defined by Sanchez and Bergantinos [70], in which the order of players
entering into the game matters. A matrix approach is used to study the
properties of the generalized Shapley value, based on ideas given by Xu et
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al. [93]. Since different orders of the same set of players may admit different
worths, our representation matrix becomes much bigger (instead of a (n×n)-
matrix, we consider a (m×m)-matrix) (see (3.1) for the value of m).

Definition 3.8. A value φ on G ′N is said to satisfy:

(i) continuity: if for all point-wise convergent sequences (〈N, vl〉)∞l=1 of general-
ized TU games, with limit game 〈N, v̄〉 it holds:

lim
l→∞φ(N, vl) = φ(N, v̄).

(ii) associated consistency: if for every generalized TU game 〈N, v〉, it holds
φ(N, v) = φ(N, vλ) for any λ > 0. For the generalized TU game 〈N, v〉,
and λ > 0, the associated generalized TU game 〈N, vλ〉 is defined as follows:
for all S ′ ∈ Ω,

vλ(S
′) = v(S ′) + λ

∑
j∈N\S

[
s+1∑
h=1

v(S ′, jh)
s+ 1

− v(S ′) − v({j})

]
, (3.15)

or equivalently,

vλ(S
′) = v(S ′) + λ

∑
j∈N\S

 ∑
T ′∈V(S ′),T ′3j,

t=s+1

v(T ′) − v(S ′)

s+ 1
− v({j})

 . (3.16)

We follow the interpretation of the associated game mentioned in Hami-
ache [25]: Let us assume, as in Myerson [51], that a communication structure
exists (here not only unilateral, but all the bilateral meetings between players
are allowed). Using this device, the proposed associated game is justified by
a double assumption, a myopic vision of the environment and a “divide and
rule” behavior of the coalitions. The myopic approach can be regarded as a
behavior such that for any coalition S ′ ∈ H(S), S ⊆ N, it ignores the links
existing between players in N \ S. As a consequence, coalition S ′ considers
itself at the center of a star-like graph, which is equivalent to say that coali-
tion S ′ considers players in N \ S as isolated elements. The “divide and rule”
strategy can be interpreted as a behavior such that, coalition S ′ may believe
that the appropriation of at least a part of the surplus, generated by its co-
operation with each of the isolated players j ∈ N \ S in any possible way, is
within reach. Thus coalition S ′ may evaluate its own worth, vλ(S ′), as the
sum of its worth in the original game, v(S ′), and of a given percentage of all
the possible previous surpluses.



56 shapley value in the generalized model

3.3.2 Matrix representation

Throughout the remainder of this section we exploit the power of a compact
algebraic approach based on Xu et al. [93], in order to provide the axiomatiza-
tion of the generalized Shapley value by means of its associated consistency
property. For given player set N, in the following we will (often) view the
game v : Ω → R as a vector v ∈ Rm with components vS ′ , S ′ ∈ Ω. Then
the formula (3.3) for the generalized Shapley value can be rewritten in its
compact matrix representation

Sh ′(N, v) =MSh
′
· v.

Here MSh
′

denotes the (n ×m)-standard matrix with rows and columns
respectively indexed by players and non-empty ordered coalitions, such that
any entry [MSh

′
]i,S ′ is given by

[MSh
′
]i,S ′ =

p
n
s−1/s! if i ∈ S;

−pns /s! if i 6∈ S,
(3.17)

for any i ∈ N, S ′ ∈ H(S), S ⊆ N, S 6= ∅. In addition, from (3.16) we derive
the following matrix representation of the associated generalized TU game
〈N, vλ〉 based on the square (m×m)-matrix Mλ of which the rows as well
as the columns are indexed by non-empty ordered coalitions:

vλ =Mλ · v,

where the square matrix Mλ is given by

[Mλ]S ′,T ′ =



1− (n− s)λ if T ′ = S ′;

λ/(s+ 1) if T ′ ∈ V(S ′) and t = s+ 1;

−λ if T ′ = {j} and j ∈ N \ S;

0 otherwise,

(3.18)

for any S ′, T ′ ∈ Ω. Clearly, the order of the indices in the columns of
Mλ should be the same as that in the rows. Now consider a sequence
(〈N, (vλ)

l〉)∞l=0 of generalized associated games, given recursively as follows:

(vλ)
l =Mλ · (vλ)l−1 for all l = 1, 2, . . ., whereas (vλ)

0 = v.
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We exploit an algebraic approach based on properties of the underlying ma-
trix Mλ satisfying vλ =Mλ · v as well as (vλ)

l = (Mλ)
l · v. The remainder of

this section deals with the diagonalization procedure applied to matrix Mλ.
Recall that in linear algebra, the following result is well-known:

Lemma 3.2. [41] Let A be a square matrix of order m.

(i) Rank Theorem: rank(A) +nullity(A) = m.

(ii) For every eigenvalue of matrix A, its (algebraic) multiplicity is at least the
dimension of the corresponding eigenspace.

(iii) The sum of the (algebraic) multiplicities of all eigenvalues of matrix A is m.

(iv) Diagonalization Theorem: The matrix A is diagonalizable if and only if the
sum of the dimensions of the distinct eigenspaces equals m, and this happens
if and only if the dimension of the eigenspace for each eigenvalue equals the
(algebraic) multiplicity of the eigenvalue.

Denote by AS ′ the row of the matrix A indexed by the ordered coalition
S ′, S ′ ∈ Ω. The matrix A is called row-inessential if

1

s!

∑
S ′∈H(S)

AS ′ =
∑
j∈S

A{j} for any S ⊆ N, S 6= ∅.

A row vector x ∈ Rm (indexed by ordered coalitions) is called row-inessential
if

1

s!

∑
S ′∈H(S)

xS ′ =
∑
j∈S

x{j} for any S ⊆ N, S 6= ∅.

Lemma 3.3. Let the square (m×m)-matrix B be invertible.

(i) The matrix product A ·B is row-inessential if and only if A is row-inessential.

(ii) For every generalized TU game 〈N, v〉 and every row-inessential matrix A, the
corresponding game 〈N,A · v〉 is an inessential game. Here the generalized TU
game 〈N,A · v〉 is defined by (A · v)(S ′) = AS ′ · v for all S ′ ∈ Ω.

Proof. First of all, by definition of the product of two matrices A and B it
always holds (A ·B)S ′ = AS ′ ·B for all S ′ ∈ Ω.

(i) Suppose matrix A is row-inessential. Let S ′ ∈ Ω. Then it holds,

1

s!

∑
S ′∈H(S)

(A ·B)S ′ =
1

s!

∑
S ′∈H(S)

(AS ′ ·B) =
1

s!

 ∑
S ′∈H(S)

AS ′

 ·B
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=

∑
j∈S

A{j}

 ·B =
∑
j∈S

(
A{j} ·B

)
=
∑
j∈S

(A ·B){j}.

Thus the matrix product A ·B is row-inessential. On the other hand, suppose
that the matrix product A ·B is row-inessential and matrix B is invertible. Let
S ′ ∈ Ω. Then by the relation above we see∑

j∈S
A{j}

 ·B =

 1
s!

∑
S ′∈H(S)

AS ′

 ·B.

and by multiplying by B−1 to the right on both sides of this relation, it
follows that the matrix A is row-inessential (provided B is invertible).

(ii) Suppose matrix A is row-inessential. Consider any generalized TU game
〈N, v〉. The generalized game 〈N,A · v〉 is inessential since for all S ′ ∈ Ω, it
holds

1

s!

∑
S ′∈H(S)

(A · v)(S ′) = 1

s!

∑
S ′∈H(S)

(AS ′ · v) =

 1
s!

∑
S ′∈H(S)

AS ′

 · v
=

∑
j∈S

A{j}

 · v =∑
j∈S

(
A{j} · v

)
=
∑
j∈S

(A · v)({j}).

3.3.3 Diagonalization property of the matrix

The aim of this subsection is to prove that the matrix Mλ (see (3.18)) is
diagonalizable. This result is the basis for the axiomatization of the Shapley
value in the next subsection.

Recall the associated generalized TU game 〈N, vλ〉 of the form (3.16), and
its matrix representation vλ =Mλ · v, where the square (m×m)-matrix Mλ
is presented by (3.18). For our further analysis, we denote, for any integer
k ∈ {0, 1, 2 . . . ,n},

µk := 1− k · λ as well as Mµk :=Mλ − µk · Im =Mλ − (1− kλ) · Im.

We will show in this subsection, that the numbers µk are the eigenvalues
of Mλ. To do so, denote by Bs,t the block in matrix Mµk containing all
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elements [Mµk ]S ′,T ′ with s = |S ′|, t = |T ′|. For any k ∈ {0, 1, . . . ,n}, Mµk has
the following structure:

Mµk =



B1,1 B1,2 0 . . . . . . . . . 0

B2,1 B2,2 B2,3 0 . . . . . . 0

B3,1 0 B3,3 B3,4 0 . . . 0
... 0 0

. . . . . . . . .
...

Bn−2,1 0 . . . 0 Bn−2,n−2 Bn−2,n−1 0

Bn−1,1 0 . . . . . . 0 Bn−1,n−1 Bn−1,n

0 . . . . . . . . . . . . 0 Bn,n


.

(3.19)
Note that both square matrices Mλ and Mµk respectively differ only in the
n diagonal blocks Bs,s of size s!Csn with corresponding diagonal entries 1−
(n− s) · λ and −(n− s− k) · λ respectively, s = 1, 2, . . . ,n. In particular, the
lower diagonal blocks are given by Bn,n and k · Bn,n respectively with zero
blocks Bn,t = [0], t = 1, 2, . . . ,n− 1 at the bottom row level. Every block Bs,s

except for s = n, is accompanied by a neighboring block Bs,s+1 at the right,
with non-zero entries λ/(s+ 1) if and only if the column-index T ′ represents
a one-player extension of the row-index S ′, that is T ′ ∈ V(S ′) and t = s+ 1.
Besides, every column index {i}, i ∈ N, has non-zero entries −λ only for
row-indices S ′ ∈ Ω not containing the individual player (that is, i 6∈ S ′).

In order to show that Mλ is diagonalizable, its eigenvalues, the multiplici-
ties of eigenvalues, and the dimension of the corresponding eigenspaces will
be studied (c.f. Lemma 3.2 (iv)). Note that for any k ∈ {0, 1, . . . ,n}, µk is an
eigenvalue of Mλ if and only if det (Mµk) = 0, or if there exists a nonzero
solution x ∈ Rm such thatMµk · x = 0. Hence the proof technique is twofold.
On the one hand, specific elementary row operations to Mµk are carried out
to create zero or identical rows. On the other hand, due to the rank theorem
applied to the matrix Mµk , its rank equals the number m of all the columns
minus the dimension of its null space being the eigenspace corresponding to
the eigenvalue µk. We start with the computation of eigenvectors.

Eigenvalues and the dimension of corresponding eigenspaces

For any k, 0 6 k 6 n, let x ∈ Rm be a vector such that (Mλ −µk · Im) · x = 0,
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then the following system of linear equations holds: for all S ′ ∈ Ω of size
1 6 s 6 n− 1,

∑
j∈N\S

(−λ) · x{j} − (n− s− k)λ · xS ′ +
∑

T ′∈V(S ′),
t=s+1

λ

s+ 1
· xT ′ = 0,

or equivalently,

(n− k− s) · xS ′ +
∑
j∈N\S

x{j} =
1

s+ 1

∑
T ′∈V(S ′),
t=s+1

xT ′ . (3.20)

In words, as long as the coefficient n− k− s does not vanish (that is, s 6=
n−k), the corresponding variable xS ′ of the ordered coalition S ′ ∈ Ω will be
interpreted as a certain linear combination of the complementary individual
variables x{j}, j ∈ N \ S, and the variables xT ′ of one-player extensions T ′ ∈
V(S ′) of S ′.

Lemma 3.4. Fix k ∈ {0, 1, . . . ,n}, then any vector x ∈ Rm satisfying (Mλ − µk ·
Im) · x = 0 has the following properties:

(i) The constraint (3.20) is equivalent to: for all S ′ ∈ Ω,

xS ′ = −β(n, s,k)
∑
j∈N\S

x{j}+
s!

(n− k)!

∑
T ′∈V(S ′),
t=n−k

xT ′ if 1 6 s 6 n− k− 1;

(3.21)
and

xS ′ =
1

k− 1

∑
j∈N\S

x{j} if n− k+ 1 6 s 6 n− 1. (3.22)

Here the recursive sequence β(n, s,k), 1 6 s 6 n− k− 1, is defined by:

(n− s− 1) ·β(n, s+ 1,k) − (n− k− s) ·β(n, s,k) = −1, (3.23)

where β(n,n− 1− k,k) = 1. The unique solution of the recursive formula
(3.23) is given by

β(n, s,k) =
1

n− s
Ckn−s

n−1−k−s∑
p=0

(Ckk+p)
−1 for all 1 6 s 6 n− k− 1.

(3.24)

(ii) In particular, xN ′ = 0 for all N ′ ∈ H(N) if k 6= 0; otherwise they are among
the free variables.
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Proof. Suppose constraint (3.20) holds. We show (3.21) and (3.22) by induc-
tion. First of all, notice that any constraint with respect to ordered coalition
N ′ ∈ H(N) of size n requires kλ · xN ′ = 0, so xN ′ = 0 for all N ′ ∈ H(N),
provided k 6= 0. Secondly, given this first fact, any constraint with respect
to ordered coalitions S ′ ∈ H(N \ {i}), i ∈ N, of size n − 1, reduces to
x{i} = (k− 1) · xS ′ for all S ′ ∈ H(N \ {i}), i ∈ N. As a consequence, x{i} = 0

for all i ∈ N, whenever k = 1. Let the ordered coalition S ′ ∈ Ω be of size
n− k+ 1 6 s 6 n− 2. By applying (3.20) as well as the induction hypothesis
to any (s+ 1)-person ordered coalition T ′ ∈ V(S ′), we obtain the following:

(n− k− s)xS ′ = −
∑
j∈N\S

x{j} +
1

s+ 1

∑
T ′∈V(S ′),
t=s+1

xT ′

= −
∑
j∈N\S

x{j} +
1

(s+ 1)(k− 1)

∑
T ′∈V(S ′),
t=s+1

∑
j∈N\T

x{j}

= −
∑
j∈N\S

x{j} +
n− 1− s

k− 1

∑
j∈N\S

x{j} =
n− k− s

k− 1

∑
j∈N\S

x{j}.

The third equality is due to the combinatorial result:∑
T ′∈V(S ′),
t=s+1

∑
j∈N\T

x{j} = (n− 1− s) · (s+ 1)
∑
j∈N\S

x{j}. (3.25)

Here the relevant data T ′ ∈ V(S ′), t = s+ 1 and j ∈ N \ T imply j ∈ N \ S,
such that there exist (n− 1− s) · (s+ 1) ordered coalitions T ′ ∈ V(S ′) satisfy-
ing t = s+ 1 and j ∈ N \ T . Since there are (n− 1− s) potential individuals
to be added to S ′, and (s+ 1) potential positions to add a single player to S ′.
This completes the proof for the case n− k+ 1 6 s 6 n− 1.

Next, consider the case 1 6 s 6 n− k− 1. We show (3.21) by backwards
induction on the coalition size. First of all, note that, for s = n− 1− k both
formula (3.20) and (3.21) coincide, provided β(n,n − 1 − k,k) = 1. Fix an
ordered coalition S ′ ∈ Ω, of size s satisfying 1 6 s 6 n− 2− k. Both (3.20)
and the induction hypothesis applied to any (s+ 1)-person ordered coalition
T ′ ∈ V(S ′), yield the following:

(n− s− k)xS ′

=−
∑
j∈N\S

x{j} +
1

s+ 1

∑
T ′∈V(S ′),
t=s+1

−β(n, t,k)
∑
j∈N\T

x{j} +
t!

(n− k)!

∑
R ′∈V(T ′),
r=n−k

xR ′
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=−
∑
j∈N\S

x{j} −
β(n, s+ 1,k)

s+ 1

∑
T ′∈V(S ′),
t=s+1

∑
j∈N\T

x{j} +
s!

(n− k)!

∑
T ′∈V(S ′),
t=s+1

∑
R ′∈V(T ′),
r=n−k

xR ′

=−
∑
j∈N\S

x{j} − (n− 1− s) ·β(n, s+ 1,k)
∑
j∈N\S

x{j} +
s!(n− k− s)

(n− k)!

∑
R ′∈V(S ′),
r=n−k

xR ′

=− [1+ (n− 1− s) ·β(n, s+ 1,k)]
∑
j∈N\S

x{j} +
s!

(n− k)!

∑
R ′∈V(S ′),
r=n−k

(n− k− s) · xR ′ .

The following combinatorial result as well as (3.25) were used to derive the
third equality: ∑

T ′∈V(S ′),
t=s+1

∑
R ′∈V(T ′),
r=n−k

xR ′ = (n− k− s)
∑

R ′∈V(S ′),
r=n−k

xR ′ . (3.26)

Note that, given R ′ ∈ V(S ′) satisfying r = n− k, there exist ((n− k) − s) or-
dered coalitions T ′ of size (s+ 1) satisfying T ′ ∈ V(S ′) as well as R ′ ∈ V(T ′).
Together with the recursive formula (3.23), this completes the inductive proof
of (3.22) when 1 6 s 6 n− k− 1, assuming (3.21).

The proof of (3.20) from (3.21) and (3.22) can be derived based on (3.25)
and (3.26). It is left to the reader to check it, as well as to check that the
sequence β(n, s,k) given by (3.24) satisfies the recursive formula (3.23).

Denote by dk the dimension of the eigenspace of Mλ corresponding to
eigenvalue µk, k ∈ {0, 1, . . . ,n}. By using (3.21) and (3.22), we now aim to
derive bound for dk.

Theorem 3.2. Let λ > 0. For any k ∈ {0, 1, . . . ,n}, µk are the eigenvalues of the
matrix Mλ, and the following relations hold for the dimension dk of the eigenspace
corresponding to the eigenvalue µk:

(i) dn = 1;

(ii) dn−1 6 n;

(iii) dk 6 (n− k)!Cn−kn for all 2 6 k 6 n− 2;

(iv) d1 6 n! −n;

(v) d0 6 n! +n− 1.
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Proof. (i) k = n. According to Lemma 3.4, it holds xN ′ = 0 for all N ′ ∈ H(N)

and

xS ′ =
1

n− 1

∑
j∈N\S

x{j} for all S ′ ∈ Ω of size 1 6 s 6 n− 1. (3.27)

For any i ∈ N, (3.27) gives n · x{i} =
∑
l∈N x{l}, and so x{i} = x{j} for all

i, j ∈ N. Suppose each singleton gets the payoff n− 1, then there is a unique
solution x ∈ Rm (up to a factor), namely xS ′ = n− s for all S ′ ∈ Ω. Hence
dn = 1.

(ii) k = n − 1. Lemma 3.4 gives xN ′ = 0 for all N ′ ∈ H(N), and (3.22)
implies

xS ′ =
1

n− 2

∑
j∈N\S

x{j} for all S ′ ∈ Ω of size 2 6 s 6 n− 1.

Hence singletons are the free variables, which gives dn−1 6 n.
(iii) 2 6 k 6 n− 2. According to Lemma 3.4, xS ′ is given by (3.22):

xS ′ =
1

k− 1

∑
j∈N\S

x{j} for all S ′ ∈ Ω, n− k+ 1 6 s 6 n− 1,

and xN ′ = 0 for all N ′ ∈ H(N). Write x(N) =
∑
j∈N x{j} as well as β =

β(n, 1,k). By (3.21) applied to singletons {i}, i ∈ N, it holds

x{i} = −β
[
x(N) − x{i}

]
+

1

(n− k)!

∑
T ′∈Ω,T ′3i,
t=n−k

xT ′ for all i ∈ N. (3.28)

Summing up the latter equalities over all i ∈ N yields the following:

(1+ (n− 1)β) · x(N) =
1

(n− k− 1)!

∑
R ′∈Ω,
r=n−k

xR ′ .

Substituting the latter expression for x(N) into equation (3.28), we obtain the
following

(1−β) · x{i} =
−(n− k) ·β
1+ (n− 1) ·β

· 1

(n− k)!

∑
R ′∈Ω,
t=n−k

xR ′ +
1

(n− k)!

∑
R ′∈Ω,R ′3i,
r=n−k

xR ′ .

Hence the variables corresponding to (n− k)-person ordered coalitions are
the only free variables, that is dk 6 (n− k)!Cn−kn for all 2 6 k 6 n− 1.
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(iv) k = 1. According to Lemma 3.4, it holds xN ′ = 0 for all N ′ ∈ H(N),
xi = 0 for all i ∈ N, and

xS ′ =
s!

(n− 1)!

∑
R ′∈V(S ′),
r=n−1

xR ′ for any S ′ ∈ Ω of size 1 6 s 6 n− 2. (3.29)

Applying (3.29) to singletons we have∑
R ′∈Ω,R ′3i,
r=n−1

xR ′ = 0 for any i ∈ N.

Summing up the latter equalities over all i ∈ N yields the following

0 =
∑
i∈N

∑
R ′∈Ω,R ′3i,
r=n−1

xR ′ = (n− 1)
∑
R ′∈Ω,
r=n−1

xR ′ .

Since n > 2, it holds,∑
R ′∈Ω,R ′ 63i,
r=n−1

xR ′ =
∑
R ′∈Ω,
r=n−1

xR ′ −
∑

R ′∈Ω,R ′3i,
r=n−1

xR ′ = 0 for any i ∈ N.

Note that, fixing two players i, j ∈ N, i 6= j, there is no overlap-
ping part in

∑
R ′∈Ω,R ′ 63i,r=n−1 xR ′ and

∑
R ′∈Ω,R ′ 63j,r=n−1 xR ′ . Hence the

free variables are corresponding to the (n − 1)-person ordered coalitions,
in number n!, with additional conditions that the mutual relationship∑
R ′∈Ω,R ′ 63i,r=n−1 xR ′ = 0, i ∈ N, are satisfied. Thus there are at most n!−n

free variables.
(v) k = 0. According to Lemma 3.4, xN ′ for all N ′ are free variables. Since

β(n, s, 0) = 1, by (3.21) it holds

xS ′ = −
∑
j∈N\S

x{j} +
s!
n!

∑
T ′∈V(S ′),
t=n

xT ′ for all S ′ ∈ Ω, of size 1 6 s 6 n− 1.

(3.30)
Apply (3.30) to any singleton {i}, i ∈ N, we get

∑
j∈N

x{j} =
1

n!

∑
T ′∈Ω,T ′3i,

t=n

xT ′ =
1

n!

∑
T ′∈H(N)

xT ′ . (3.31)
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The free variables are corresponding to n-person ordered coalitions N ′ ∈
H(N) and singletons {i}, i ∈ N, satisfying

∑
j∈N x{j} = constant. Thus, there

are at most n! +n− 1 free variables.
Since for any k ∈ {0, 1, . . . ,n}, there exists a nonzero solution x such that

Mµk · x = 0, µk are eigenvalues of Mλ.

Theorem 3.3. Every eigenvector x ∈ Rm corresponding to eigenvalue 1 of Mλ is
row-inessential:

1

s!

∑
S ′∈H(S)

xS ′ =
∑
j∈S

x{j} for all S ⊆ N, S 6= ∅. (3.32)

Proof. We present two approaches to prove this theorem.

Approach 1: Throughout the proof, we write x̄ = 1
n!
∑
N ′∈H(N) xN ′ . We first

claim that

1

s!

∑
S ′∈H(S)

xS ′ +
∑
j∈N\S

x{j} =
1

n!

∑
N ′∈H(N)

xN ′ for all S ⊆ N, S 6= ∅. (3.33)

Then the row-inessential property

1

s!

∑
S ′∈H(S)

xS ′ =
∑
j∈S

x{j} for all S ⊆ N, S 6= ∅,

is a direct consequence of (3.33) applied to any singleton {i}, i ∈ N, yielding
the equality

∑
j∈N x{j} = x̄ and in turn, the row-inessential property for x.

The proof of (3.33) proceeds by backwards induction on the coalition size
of S = N \ T . For that purpose, note that averaging (3.20) for k = 0 over
all ordered coalition S ′ ∈ H(S) yields the following equality: for all S ⊆ N,
S 6= ∅,

∑
S ′∈H(S)

(n− s)

s!
· xS ′ +

∑
j∈N\S

x{j} =
1

(s+ 1)!

∑
S ′∈H(S)

∑
j∈N\S

∑
R ′∈V(S ′),R ′3j

r=s+1

xR ′ .

(3.34)
The n-person case is clear, while (3.33) and (3.34) in the (n− 1)-person case
with S = N \ {i} agree with each other since∑

S ′∈H(N\{i})

∑
R ′∈V(S ′),R ′3i

r=s+1

xR ′ =
∑

N ′∈H(N)

xN ′ .
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The induction hypothesis applied to S = N \ T states the following:

1

(n− t)!

∑
S ′∈H(N\T)

xS ′ +
∑
k∈T

x{k} = x̄. (3.35)

We show that (3.33) holds true for S = N \ (T ∪ {i}) where i 6∈ T , and s =

n− t− 1 and N \ S = T ∪ {i}. Next we apply (3.34) to S = N \ (T ∪ {i}) and
proceed as follows:

∑
S ′∈H(N\(T∪{i}))

t+ 1

(n− t− 1)!
· xS ′ +

∑
j∈T∪{i}

x{j}

=
1

(n− t)!

∑
S ′∈H(N\(T∪{i}))

∑
j∈T∪{i}

∑
R ′∈V(S ′),R ′3j,

r=s+1

xR ′

=
1

(n− t)!

∑
S ′∈H(N\(T∪{i}))

∑
j∈T

∑
R ′∈V(S ′),R ′3j,

r=s+1

xR ′

+
1

(n− t)!

∑
S ′∈H(N\(T∪{i}))

∑
R ′∈V(S ′),R ′3i,

r=s+1

xR ′ .

Because of (3.35), a first simplification holds:

1

(n− t)!

∑
S ′∈H(N\(T∪{i}))

∑
R ′∈V(S ′),R ′3i,

r=s+1

xR ′ =
1

(n− t)!

∑
P ′∈H(N\T)

xP ′

= x̄−
∑
k∈T

x{k}.

Moreover by applying the induction hypothesis (3.35) to the (n− t)-person
ordered coalitions of the form (N \ (T ∪ {i})) ∪ {j}, j ∈ T , we obtain a second
simplification: for all j ∈ T ,

1

(n− t)!

∑
S ′∈H(N\(T∪{i}))

∑
R ′∈V(S ′),R ′3j,

r=s+1

xR ′ =
1

(n− t)!

∑
R ′∈H((N\(T∪{i}))∪{j})

xR ′

= x̄−
∑

k∈(T∪{i})\{j}
x{k}

= x̄+ x{j} −
∑

k∈T∪{i}
x{k}.
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Substituting both simplifications yields

∑
S ′∈H(N\{T∪{i}})

t+ 1

(n− t− 1)!
xS ′ +

∑
k∈T∪{i}

x{k}

=
∑
j∈T

x̄+ x{j} − ∑
k∈T∪{i}

x{k}

+ x̄−
∑
k∈T

x{k} = (t+ 1) · x̄− t ·
∑

k∈T∪{i}
x{k}.

Hence (3.33) holds true for S = N \ (T ∪ {i}) where i 6∈ T . This completes the
inductive proof of (3.33).

Approach 2: Averaging (3.30) over all ordered coalitions S ′ ∈ H(S) and using
(3.31) yields the following:

1

s!

∑
S ′∈H(S)

xS ′ = −
∑
j∈N\S

x{j} +
1

n!

∑
S ′∈H(S)

∑
T ′∈V(S ′),
t=n

xT ′

= −
∑
j∈N\S

x{j} +
1

n!

∑
T ′∈H(N)

xT ′

= −
∑
j∈N\S

x{j} +
∑
j∈N

x{j} =
∑
j∈S

x{j}.

Rank analysis by elementary row operations

In this section, specific elementary row operations are carried out to create
zero or identical rows, in order to derive the upper bound for the rank of
matrix Mµk , k ∈ {0, 1, . . . ,n}. We mainly use an operation in which a row
is replaced by the sum of that row and a multiple of some other rows with
suitably chosen multipliers. (But also, column operations are used when k =

n that we will discuss later).
To analyze the rank structure of Mµk , we now transform Mµk by such

elementary row operations into an appropriate form. Let in the following
M
µk
S ′ stand for the row of Mµk corresponding to the index S ′. We emphasize

that for given k, the transformations of Mµk described below concern the
row block Bs,1, ...,Bs,n with rows Mµk

S ′ as follows:

for k = 0: s = 1 and s = n; for k = 1, . . . ,n− 1: s = n− k. (3.36)
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According to the structure of Mµk (see (3.19)), for fixed s, 1 6 s 6 n− 1,
only row blocks Bs,1, Bs,s, and Bs,s+1 have non-zero elements (if s = n, then
only Bn,n has nonzero elements when k 6= 0). In order to create more zero
elements in the s level, the block Bs,s+1 can be changed into a zero block
by some suitable row operations using the diagonal block Bs+1,s+1 below it.
The left block Bs,1 as well as the zero block Bs,s+2 change accordingly. In the
second stage, the adapted block Bs,s+2 is changed into a zero block by using
the diagonal block Bs+2,s+2 below it, which yields that the block Bs,1 as
well as the zero block Bs,s+3 has changed and has to be recalculated again.
The procedure continues iteratively and ends up with zero blocks Bs,s+1,
Bs,s+2, . . ., Bs,n−1, whereas the adapted left block Bs,1 and the right block
Bs,n need to be recalculated. Specially, if k 6= 0, Bs,n is also a zero block. This
procedure can be illustrated by the following matrices (the empty positions
in the matrix are 0): originally we have

B1,1 B1,2

B2,1 B2,2 B2,3
...

. . .
. . .

Bs,1 Bs,s Bs,s+1 0

Bs+1,1 Bs+1,s+1 Bs+1,s+2
...

. . .
. . .

Bn−2,1 Bn−2,n−2 Bn−2,n−1

Bn−1,1 Bn−1,n−1 Bn−1,n

Bn,n



.

Denote by Bls,t the resulting block after the l-th modification, then after the
first modification we have

B1,1 B1,2

B2,1 B2,2 B2,3
...

. . .
. . .

B1s,1 Bs,s 0 B1s,s+2

Bs+1,1 Bs+1,s+1 Bs+1,s+2
...

. . .
. . .

Bn−2,1 Bn−2,n−2 Bn−2,n−1

Bn−1,1 Bn−1,n−1 Bn−1,n

Bn,n



.
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And after the second modification we have

B1,1 B1,2

B2,1 B2,2 B2,3
...

. . .
. . .

B2s,1 Bs,s 0 0 B2s,s+3

Bs+1,1 Bs+1,s+1 Bs+1,s+2
...

. . .
. . .

Bn−2,1 Bn−2,n−2 Bn−2,n−1

Bn−1,1 Bn−1,n−1 Bn−1,n

Bn,n



.

The procedure continues until we get

B1,1 B1,2

B2,1 B2,2 B2,3
...

. . .
. . .

Bn−ss,1 Bs,s 0 · · · · · · 0

Bs+1,1 Bs+1,s+1 Bs+1,s+2
...

. . .
. . .

Bn−2,1 Bn−2,n−2 Bn−2,n−1

Bn−1,1 Bn−1,n−1 Bn−1,n

Bn,n



.

More precisely, we fix k, and choose one row in Mµk indexed by S ′ (with
size s depending on k as in (3.36)). Row operations are done repeatedly by
using rows in Mµk indexed by R ′, where R ′ ∈ V(S ′) and r ranging from
s + 1 to n. Denoting by the Mµk

S ′ |l the result we derive in the l-th stage,
1 6 l 6 n− s, it holds (with some coefficient αr to be fixed later) that

M
µk
S ′ |l =M

µk
S ′ |l−1 +

∑
R ′∈V(S ′),
r=s+l

αr ·MµkR ′ where M
µk
S ′ |0 :=Mµk

S ′ .

The above formula is equivalent to

M
µk
S ′ |l =M

µk
S ′ +

∑
R ′∈V(S ′),
s+16r6s+l

αr ·MµkR ′ for all 1 6 l 6 n− s.
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For fixed S ′, our aim at each stage l, is to obtain [Mµk ]S ′,T ′ |l = 0 for all
T ′ ∈ Ω with size t = s + l while keeping the results of previous stages
([Mµk ]S ′,T ′ |l = 0 for all T ′ ∈ Ω with size t = s+ 1, s+ 2, . . . , s+ l− 1). Such
a procedure is used to determine the multiplier αr in each stage.

Lemma 3.5. For fixed k ∈ {1, 2, . . . ,n− 1}, and S ′ ∈ Ω (with size s depending on
k as in (3.36)), the multipliers αj satisfy the relation:

[Mµk ]S ′,T ′ |n−s = [Mµk ]S ′,T ′ +
∑

R ′∈V(S ′),
s+16r6n

αr · [Mµk ]R ′,T ′ = 0, (3.37)

for all T ′ ∈ Ω with size t = s+ 1, s+ 2, . . . ,n. Specially in case k = 0, the above
equation holds for all t = s+ 1, s+ 2, . . . ,n− 1. Here, αr (in (3.37)) is defined by
the recursive formula

αj · (n−k− j)λ = αj−1 ·
λ

j
· (j− s) for all s+ 1 6 j 6 n, where αs = 1. (3.38)

Proof. Fix s, 1 6 s 6 n− 1. We describe for any size r = j, s+ 2 6 j 6 n,
the disappearance and the return of the zero blocks Bs,j as some type of
equilibrium condition caused by the elementary row operations at size r =
j− 1 and r = j respectively. The compensation of the disappearance through
the diagonal block Bj,j amounts to the product −αj · (n− j− k)λ generated
by the (yet unknown) multiplier αj as well as the value −(n − j − k)λ of
the diagonal elements of block Bj,j. The disappearance of the zero block Bs,j

amounts to the product −αj−1 · (λ/j) · (j− s) generated by the (yet unknown)
multiplier αj−1, the value λ/j of each non-zero element in the neighboring
block Bj−1,j, counting for fixed T ′ ∈ Ω, t = j, T ′ ∈ V(S ′), the possible choices
for ordered coalitions R ′ ∈ Ω, r = j− 1, satisfying T ′ ∈ V(R ′) and R ′ ∈ V(S ′).
This number of possible choice equals j− s. Consequently, the equilibrium
condition for size j is given by (3.38).

Recall that for different k, different numbers s are involved in the trans-
formation process for Mµk . The following theorem presents the information
on the relevant row blocks of Mµk after the transformation process which
is needed for the rank analysis. In the proof also the numbers αj are given
explicitly.

Theorem 3.4. For any k ∈ {0, 1, . . . ,n− 1}, the following results holds for Mµk

after the modification:

(i) If k = 0, Mµk
{i}

|n−1 =Mµk
{j}

|n−1 = constant for all i, j ∈ N, and Mµk
N ′ = 0

for all N ′ ∈ H(N);
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(ii) If k = 1, Mµk
S ′ |1 = M

µk
S ′′ |1 = constant for all S ′,S ′′ ∈ H(S), S ⊆ N,

s = n− 1;

(iii) If k ∈ {2, 3, . . . ,n− 1}, Mµk
S ′ |k = 0 for all S ′ ∈ Ω of size s = n− k.

Proof. (i) k = 0. Clearly Mµk
N ′ = 0 for all N ′ ∈ H(N). Fix S ′ = {i}, i ∈ N. By

Lemma 3.5,

[Mµ0 ]{i},T ′ |n−1 = [Mµ0 ]{i},T ′ +
∑

R ′∈Ω,R ′3i,
26r6n−1

αr · [Mµ0 ]R ′,T ′ = 0,

for all T ′ ∈ Ω of size t = 2, 3, . . . ,n− 1, where αr is defined by

αj =
1

j
· (n− j− 1)!

(n− 2)!
for all 2 6 j 6 n.

It is left to determine the numbers [Mµ0 ]{i},T ′ with t = 1 and t = n, after
the adaption step. Note that [Mµ0 ]{i},{i} is unchanged during the adaption,
hence the value −(n− 1)λ remains. Fix j ∈ N, j 6= i,

[Mµ0 ]{i},{j}|n−1 =[Mµ0 ]{i},{j} +
∑

R ′∈Ω,R ′3i,
26r6n−1

αr · [Mµ0 ]R ′,{j}

=− λ+

n−1∑
l=2

αl
∑

R ′∈Ω,r=l,
R ′3i,R ′ 63j

(−λ) = −λ− λ

n−1∑
l=2

αl ·Cl−1n−2 · l!

=− λ− λ

n−1∑
l=2

1 = −(n− 1)λ = [Mµ0 ]{i},{i}.

According to Lemma 3.5, for all N ′ ∈ H(N),

[Mµ0 ]{i},N ′ |n−1 = [Mµ0 ]{i},N ′ +
∑

R ′∈Ω,R ′3i,
26r6n−1

αr · [Mµ0 ]R ′,N ′

= 0+
n− 1

n
αn−1 =

n− 1

n!
.

Hence after adaption, Mµk
{i}

|n−1 =Mµk
{j}

|n−1 = constant for all i, j ∈ N.
(ii) k = 1. Consider a coalition S ′ ∈ Ω of size s = n−1. Note that Bn−1,n−1

is a zero block and according to Lemma 3.5,

[Mµ1 ]S ′,T ′ |1 = [Mµ1 ]S ′,T ′ +
1

n

∑
R ′∈V(S ′),
r=n

[Mµ1 ]R ′,T ′ = 0 if t = n.
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Hence the only nonzero element left in the s = n− 1 level is [Mµ1 ]S ′,{j} = −λ

if j 6∈ S ′, which gives Mµk
S ′ |1 = M

µk
S ′′ |1 = constant for all S ′,S ′′ ∈ H(S),

S ⊆ N, s = n− 1.
(iii) Fix k ∈ {2, 3, . . . ,n− 1}. Consider coalition S ′ ∈ Ω of size s = n− k,

then Bn−k,n−k = [0] (Specially when k = n− 1, the diagonal elements are
all zero in B1,1). According to Lemma 3.5,

[Mµk ]S ′,T ′ |k = [Mµk ]S ′,T ′ +
∑

R ′∈V(S ′),
n−k+16r6n

αr · [Mµk ]R ′,T ′ = 0,

for all t = n− k+ 1,n− k+ 2, . . . ,n, where

αj = (−1)j−n+k · (n− k)!
j!

for all j = n− k+ 1,n− k+ 2, . . . ,n.

Note that [Mµk ]S ′,{j} = 0 if j ∈ S ′; otherwise if j 6∈ S ′, after the adaption step
we have

[Mµk ]S ′,{j}|k =[Mµk ]S ′,{j} +
∑

R ′∈V(S ′),
n−k+16r6n

αr · [Mµk ]R ′,{j}

=− λ+

n−1∑
l=n−k+1

αl
∑

R ′∈V(S ′),R ′ 63j,
r=l

(−λ)

=− λ− λ

n−1∑
l=n−k+1

αl ·Cl−n+kk−1 · l!
(n− k)!

=λ

k−1∑
m=0

(−1)m+1 ·Cmk−1 = −(1− 1)k−1λ = 0.

Hence after the adaption the rows indexed by S ′ of size s = n− k are all
zero rows.

Next we treat the case k = n. Instead of rows, we use elementary column
operations to simplify Mµn . Denote by LT ′ the column in Mµn indexed by
the ordered coalition T ′, T ′ ∈ Ω. Fix i ∈ N. By suitably chosen elemen-
tary column operations, the column indexed by i, say L{i}, and the sum of
columns indexed by the other singletons, say L̄{i} :=

∑
j∈N\{i} L{j}, can be

transformed respectively, into two identical columns. According to (3.19),
for fixed t, 1 6 t 6 n, only block Bt,t and Bt−1,t contain nonzero elements.
Starting from t = n− 1, by suitably chosen T ′, the element [L̄]S ′,{i} can be
changed to 0 for s = n− 1, with the help of the diagonal block Bn−1,n−1,
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whereas the element [L̄]S ′,{i} with s = n− 2 changes and need a recalcula-
tion. In the next stage, [L]S ′,{i} as well as [L̄]S ′,{i} can be transformed to 0 for
s = n− 2, by using the diagonal block Bn−2,n−2, whereas the element with
size s = n− 3 changes and need a recalculation. The iterative procedure ends
up with zero elements in [L]S ′,{i} as well as [L̄]S ′,{i} for all s = n,n− 1, . . . , 2,
only the element for s = 1 need a recalculation.

Lemma 3.6. Let k = n.

(i) It holds for all S ′ ∈ Ω of size s = n,n− 1, . . . , 2 that,

[L]S ′,{i}|n−2 = [L]S ′,{i} +
∑

T ′∈Ω,T ′ 63i,
26t6n−1

βt · [L]S ′,T ′ = 0.

Here βt is defined recursively by

−(j− 1) ·βj−1 = −1+ (n− j) ·βj for all j = n− 2,n− 1, . . . , 2, (3.39)

with βn−1 = 1/(n− 1).

(ii) It holds for all S ′ ∈ Ω with size s = n,n− 1, . . . , 2 that,

[L̄]S ′,{i}|n−2 = [L̄]S ′,{i} +
∑

T ′∈Ω,T ′3i,
26t6n−1

γt · [L]S ′,T ′ +
∑

T ′∈Ω,T ′ 63i,
26t6n−2

γ̄t · [L]S ′,T ′ = 0.

Here γ̄t and γt are defined respectively by

−(j− 1) · γj−1 = −(n− j+ 1) + (n− j+ 1) · γj;

−(j− 1) · γ̄j−1 = −(n− j) + (n− j) · γ̄j + γj,
(3.40)

for all j = n− 2,n− 3, . . . , 2 with γn−1 = 1/(n− 1) and γ̄n−1 = 0.

Proof. (i) Fix i ∈ N. For any S ′ ∈ Ω, if S ′ 3 i, by definition [L]S ′,{i} = 0, hence
operations are done regarding S ′ 63 i. We describe the way how [L]S ′,{i} is
transformed to 0 at size t = j − 1 for S ′ 63 i, s = j − 1, from its original
value as well as the influence of the previous column operation at size t = j.
After the operation for t = j, [L]S ′,{i} for s = j is becoming 0, while [L]S ′,{i}
for S ′ 63 i, s = j − 1 is changed to −λ + βj · (λ/j) · (n − j) · j, where −λ is
the original value of [L]S ′,{i} since i 6∈ S ′, βj is the (yet unknown) multiplier
used at size t = j, λ/j is the nonzero element in block Bj,j+1, and (n− j) · j
is the number of possibilities of T ′ for fixed S ′ satisfying T ′ ∈ V(S ′), T ′ 63 i,
t = s+ 1. The element [L]S ′,S ′ with number (j− 1)λ in the diagonal block
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Bj−1,j−1, is used to make [L]S ′,{i} equal to 0 for S ′ 63 i, s = j− 1, with the
help of the (yet unknown) multiplier βj−1, hence (3.39) holds.

(ii) For the fixed i, [L̄]S ′,{i} = −(n − s)λ if i ∈ S ′, and −(n − s − 1)λ

otherwise, for all 1 6 s 6 n − 2. While for s = n − 1, the only nonzero
element is [L̄]S ′,{i} = −λ if S ′ 3 i. Hence in the first stage we have
−λ + (n − 1)λ · γn−1 = 0, which gives γn−1 = 1/(n − 1). We distinguish
two cases S ′ 3 i and S ′ 63 i. If S ′ 3 i, after the operation at size t = j,
3 6 j 6 n − 1, it holds [L̄]S ′,{i} = −(n − j + 1)λ + γj · (λ/j) · (n − j + 1) · j,
where −(n− j+ 1)λ is the original value, λ/j is the nonzero element in block
Bj,j, (n− j+ 1) · j is the number of possibilities for T ′ such that T ′ ∈ V(S ′),
T ′ 3 i, t = s + 1, and γj is the (yet unknown) multiplier at size t = j.
The element [L̄]S ′,S ′ with value (j− 1)λ in the diagonal block Bj−1,j−1, to-
gether with the (yet unknown) multiplier γj−1, are used to make [L̄]S ′,{i}
equal to 0 for S ′ 3 i, s = j − 1. This gives the first recursive formula in
(3.40). If S ′ 63 i, after the operation at size t = j, 3 6 j 6 n− 1, we obtain
[L̄]S ′,{i} = −(n− j)λ+ γ̄j · (λ/j) · (n− j) · j+ γj · (λ/j) · j. The element [L̄]S ′,S ′
with value (j − 1)λ in the diagonal block Bj−1,j−1, together with the (yet
unknown) multiplier γ̄j−1, are used to make [L̄]S ′,{i} equal to 0 for S ′ 63 i,
s = j− 1. This proves the second relation in (3.40).

According to Lemma 3.6 we have

γt = (n− t)/(n− 1) for t = n− 1,n− 2, . . . 2, and

γ̄t = (n− t− 1)/(n− 1) for t = n− 2,n− 3, . . . , 2.

Theorem 3.5. For k = n, after the (column) transformation steps applied to the
matrix Mµn , it holds L{i}|n−2 = −L̄{i}|n−2 for any i ∈ N.

Proof. We now have to check the element in LS ′,{i} and L̄S ′,{i} when s = 1.
Note that [L]{i},{i} = λ is not changed during the whole process, and for any
j ∈ N, j 6= i,

[L]{j},{i}|n−2 = −λ+ (n− 2) ·β2 · λ = −
1

n− 1
· λ.

Concerning L̄{i}, we have

[L̄]{i},{i}|n−2 = −(n− 1) · λ+ 0+ γ2
∑

T ′∈Ω,T ′3i,
t=2

λ

2
= −λ;
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[L̄]{j},{i}|n−2 = −(n− 3) · λ+ γ̄2
∑

T ′∈Ω,t=2,
T ′ 63i,T ′3j

λ

2
+ γ2

∑
T ′∈Ω,t=2,
T ′3i,T ′3j

λ

2
=

1

n− 1
· λ.

Based on the previous results, the following holds:

Corollary 3.2. Let λ > 0. For all k ∈ {0, 1, . . . ,n}, µk are the eigenvalues of matrix
Mλ. The associated (m×m)-matrix Mµk satisfies the following upper bounds for
its rank:

(i) rank (Mµ0) 6 m− (n! +n− 1);

(ii) rank (Mµ1) 6 m− ((n− 1)!Cn−1n −n);

(iii) rank (Mµk) 6 m− (n− k)!Cn−kn for all 2 6 k 6 n− 1;

(iv) rank (Mµn) 6 m− 1.

Moreover the matrix Mλ is diagonalizable.

Proof. The upper bounds for rank(Mµk) for 0 6 k 6 n directly follow from
Theorem 3.4 and Theorem 3.5. According to the Rank Theorem in Lemma
3.2 (i), it holds dk = m− rank(Mµk) for all 0 6 k 6 n. Hence we have d0 >
n! + n− 1, d1 > n! − n and dk > (n− k)!Cn−kn for all 2 6 k 6 n. Compare
these inequalities with the results in Theorem 3.1, then all inequalities are
met as equalities. Let mk denote the algebraic multiplicity of eigenvalue µk.
Then by Lemma 3.2 (ii) and (iii) it holds,

m =

n∑
k=0

mk >
n∑
k=0

dk = n! +n− 1+n! −n+

n∑
k=2

(n− k)!Cn−kn

=

n∑
s=1

s!Csn = m.

Therefore mk = dk holds for all k ∈ {0, 1, . . . ,n} and thus the algebraic
and geometric multiplicities of the eigenvalues of Mλ coincide. In particular
we conclude that the matrix Mλ is diagonalizable with eigenvalues µk (c.f.
Lemma 3.2 (iv)).

3.3.4 Axiomatization to the generalized Shapley value

Based on the results in previous subsections we are now able to give the
characterization for the Shapley value. Since by Corollary 3.2, Mλ is diago-
nalizable, there exists a diagonal matrix Dλ and an invertible matrix P such
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that Mλ = PDλP
−1. Particularly, (Mλ)l = P(Dλ)lP−1. The diagonal entries

of the diagonal matrix Dλ are the eigenvalues µk = 1− kλ, 0 6 k 6 n of Mλ
with corresponding multiplicities mk.

Theorem 3.6. For λ small enough (i.e., 0 < λ < 2/n), the sequence of generalized
associated games (〈N, (vλ)

l〉)∞l=0 converges point-wise to some inessential general-
ized TU game 〈N, v̄〉.

Proof. Notice that −1 < 1−kλ < 1 for all 1 6 k 6 n if and only if 0 < λ < 2/n.
Under this assumption, the diagonal entries (µk)

l of the diagonal matrix
(Dλ)

l converge to zero, except for µ0 = 1. The columns of the invertible
matrix P are the corresponding eigenvectors. Hence the limit game 〈N, v̄〉 is
given by

v̄ = lim
l→∞(Mλ)l · v = lim

l→∞P(Dλ)lP−1 · v = P · lim
l→∞(Dλ)l · P−1v = PDP−1v,

(3.41)
where D = liml→∞(Dλ)l. The diagonal entries of the diagonal matrix D are
equal to zero or one. So every column of the product matrix PD is either
the zero column or a column of P, that is, an eigenvector of the matrix Mλ
corresponding to eigenvalue 1. By Theorem 3.2, any such eigenvector is row-
inessential and so, the matrix product PD is row-inessential. By Lemma 3.2
(i), the matrix PDP−1 is row-inessential. By Lemma 3.2 (ii), the limit game
PDP−1v is an inessential game.

Lemma 3.7. The generalized Shapley value of the form (3.3) satisfies continuity,
inessential game property, and associated consistency.

Proof. (i) Obviously, the Shapley value of the form (3.3) satisfies the continu-
ity.

(ii) Inessential game property: Consider an inessential generalized TU game
〈N, v〉. Let i ∈ N. Note that for all S ⊆ N \ {i} it holds,

∑
S ′∈H(S)

pns
(s+ 1)!

s+1∑
h=1

v(S ′, ih) =
∑

T ′∈H(S∪{i})

pnt−1
t!

v(T ′) = pns
∑

j∈S∪{i}
v({j}),

where the latter equation is valid for inessential generalized TU games (see
Definition 3.5 (iii)). From this, together with (3.3), we derive the following:

Sh ′i(N, v) =
∑

S⊆N\{i}

pns
(s+ 1)!

∑
S ′∈H(S)

s+1∑
h=1

v(S ′, ih)
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−
∑

S⊆N\{i}

pns
(s+ 1)!

∑
S ′∈H(S)

s+1∑
h=1

v(S ′)

=
∑

S⊆N\{i}

∑
T ′∈H(S∪{i})

pnt−1
t!

v(T ′) −
∑

S⊆N\{i}

pns
s!

∑
S ′∈H(S)

v(S ′)

=
∑

S⊆N\{i}

pns

∑
j∈S∪{i}

v({j}) −
∑

S⊆N\{i}

pns

∑
j∈S

v({j})

=
∑

S⊆N\{i}

pns v({i}) = v({i}).

(iii) Associated consistency: we use both a linear approach and a matrix ap-
proach to prove this property.

Linear Approach: The generalized Shapley value satisfies the associated con-
sistency if Sh ′(N, v) = Sh ′(N, vλ) for any generalized game 〈N, v〉. Since
the generalized Shapley value satisfies linearity, it is equivalent to show
Sh ′(N, vλ − v) = 0, where

(vλ − v) (S
′) = vλ(S

′) − v(S ′) = λ
∑
j∈N\S

(
s+1∑
h=1

v(S ′, jh)
s+ 1

− v(S ′) − v({j})

)
,

for any S ′ ∈ Ω. Since λ > 0, we define a generalized game 〈N,w〉 by

w(S ′) =
1

λ
(vλ − v) (S

′) =
∑
j∈N\S

s+1∑
h=1

v(S ′, jh)
s+ 1

− (n− s)v(S ′) −
∑
j∈N\S

v({j}),

(3.42)
for any S ′ ∈ Ω. Then it suffices to show that the generalized Shapley value
Sh ′(N,w) coincides with the zero allocation. Fix i ∈ N, according to (3.42)
we have

w(S ′, ih
′
) =

∑
j∈N\(S∪{i})

s+2∑
h=1

v(S ′, ih
′
, jh)

s+ 2
− (n− s− 1)v(S ′, ih

′
)

−
∑

j∈N\(S∪{i})
v({j}),
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for any S ′ ∈ Ω, S ′ 63 i, h ′ = 1, 2, . . . , s+ 1. Then for any i ∈ N, by (3.3) we
have

Sh ′i(N,w) =
∑

S⊆N\{i}

pns
(s+ 1)!

∑
S ′∈H(S)

s+1∑
h ′=1

(
w(S ′, ih

′
) −w(S ′)

)

=
∑

S⊆N\{i}

pns
(s+ 1)!

∑
S ′∈H(S)

∑
j∈N\(S∪{i})

s+1∑
h ′=1

(
s+2∑
h=1

v(S ′, ih
′
, jh)

s+ 2
−

s+1∑
h=1

v(S ′, jh)
s+ 1

)

−
∑

S⊆N\{i}

(n− s) · pns
(s+ 1)!

∑
S ′∈H(S)

s+1∑
h ′=1

(
v(S ′, ih

′
) − v(S ′)

)
+ v({i}),

(3.43)

as well as

∑
j∈N\(S∪{i})

s+1∑
h ′=1

s+2∑
h=1

v(S ′, ih
′
, jh) =

∑
j∈N\(S∪{i})

s+2∑
h ′=1

s+1∑
h=1

v(S ′, jh, ih
′
),

for any S ′ ∈ Ω, S ′ 63 i. Let T = S∪ {j}, where S ⊆ N \ i, j ∈ N \ (S∪ {i}), then

∑
T ′∈H(T)

v(T ′) =
∑

S ′∈H(S)

s+1∑
h=1

v(S ′, jh) and,

∑
T ′∈H(T)

t+1∑
h ′=1

v(T ′, ih
′
) =

∑
S ′∈H(S)

s+2∑
h ′=1

s+1∑
h=1

v(S ′, jh, ih
′
).

According to the last three equalities, we obtain

Sh ′i(N,w) =
∑

T⊆N\{i},
T 6=∅

pnt−1
(t+ 1)!

∑
j∈T

∑
T ′∈H(T)

t+1∑
h ′=1

(
v(T ′, ih

′
) − v(T ′)

)

−
∑

S⊆N\{i}

(n− s) · pns
(s+ 1)!

∑
S ′∈H(S)

s+1∑
h ′=1

(
v(S ′, ih

′
) − v(S ′)

)
+ v({i})

=
∑

T⊆N\{i},
T 6=∅

t!(n− t)!
(t+ 1)!n!

∑
T ′∈H(T)

t+1∑
h ′=1

(
v(T ′, ih

′
) − v(T ′)

)

−
∑

S⊆N\{i}

(n− s)!
(s+ 1) ·n!

∑
S ′∈H(S)

s+1∑
h ′=1

(
v(S ′, ih

′
) − v(S ′)

)
+ v({i})

=0.
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Matrix approach: The associated consistency property for the generalized
Shapley value can be rewritten as the matrix equation MSh

′
Mλv = MSh

′
v

or equivalently, (MSh
′
Mλ −M

Sh ′)v = 0. We aim to show the matrix equa-
tion MSh

′
Mλ −M

Sh ′ = 0 or equivalently, MSh
′
(Mλ − Im) = 0, where Im

denotes the (m×m) identity matrix. By applying the row-column rule for
computing the product of two matrix, we consider its entry in row i and
column T ′. Fix both player i ∈ N and ordered coalition T ′ ∈ Ω. Due to
the construction of the matrix MSh

′
(see (3.17)), we split the entry in two

components as follows:

[MSh
′
(Mλ − Im)]i,T ′ =

∑
S ′∈Ω

[MSh
′
]{i},S ′ · [Mλ − Im]S ′,T ′

=
∑
S ′∈Ω
S ′3i

pns−1
s!

[Mλ − Im]S ′,T ′ −
∑
S ′∈Ω
S ′ 63i

pns
s!

[Mλ − Im]S ′,T ′ .

Next, due to the structure of the matrix Mλ − Im we distinguish four cases.

Case One. Suppose T ′ = {i}. Since [Mλ − Im]S ′,{i} 6= 0 if and only if i 6∈ S
(provided S ′ 6= {i}), it holds

[MSh
′
(Mλ − Im)]{i},T ′ =

∑
S ′∈Ω
S ′3i

pns−1
s!

[Mλ − Im]S ′,{i} −
∑
S ′∈Ω
S ′ 63i

pns
s!

[Mλ − Im]S ′,{i}

=
pn0
1!

[Mλ − Im]{i},{i} −
∑
S ′∈Ω,
S ′ 63i

pns
s!

(−λ)

= −(n− 1)pn0 λ+ λ

n−1∑
s=1

Csn−1p
n
s = 0.

Case Two. Suppose T ′ = {j}, j 6= i. Since [Mλ− Im]S ′,{j} 6= 0 if and only if j 6∈ S
(provided S ′ 6= {j}), it holds

[MSh
′
(Mλ − Im)]{i},T ′ =

∑
S′∈Ω
S′3i

pns−1
s!

[Mλ − Im]S′,{j} −
∑
S′∈Ω
S′ 63i

pns
s!

[Mλ − Im]S′,{j}

=
∑
S′∈Ω,

S′3i,S′ 63j

pns−1
s!

(−λ) −
pns
1!

[Mλ − Ip]{j},{j} −
∑
S′∈Ω

S′ 63i,S′ 63j

pns
s!

(−λ)

= −λ

n−1∑
s=1

Cs−1n−2p
n
s−1 + λ

n−2∑
s=1

Csn−2p
n
s + λ

1

n(n− 1)
(n− 1)
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= −λpnn−2 +
λ

n
+ λ

n−2∑
s=1

(
Csn−2p

n
s −Cs−1n−2p

n
s−1

)
= 0.

Case Three. Suppose T ′ ∈ H(T), t > 2, T 63 i. Then T ′ 6∈ V(S ′) for all S ′ ∈ Ω,
S 3 i. Further, every ordered coalition S ′ of the form S ′ = T ′ \ {j}, j ∈ T ,
satisfies T ′ ∈ V(S ′) and i 6∈ S. Consequently,

[MSh
′
(Mλ − Im)]{i},T ′ = −

∑
S ′∈Ω
S ′ 63i

pns
s!

[Mλ − Im]S ′,T ′

= −
pnt
t!

[Mλ − Im]T ′,T ′ −
∑

S ′∈Ω,S ′ 63i
T ′∈V(S ′)

pnt−1
(t− 1)!

λ

t

=
pnt
t!

(n− t)λ− t
pnt−1
(t− 1)!

λ

t
= 0.

Case Four. Suppose T ′ ∈ H(T), t > 2, and T 3 i. Then every ordered coalition
S ′ of the form S ′ = T ′ \ {j}, j ∈ T , j 6= i, satisfies T ′ ∈ V(S ′) and i ∈ S. Notice
that T ′ ∈ V(S ′) for some S ′ ∈ Ω, i 6∈ S, if and only if S = T \ {i} (provided
i ∈ T ). Consequently

[MSh
′
(Mλ − Im)]{i},T ′ =

pnt−1
t!

[Mλ − Im]T ′,T ′ −
pnt−1
(t− 1)!

[Mλ − Im]T ′\{i},T ′

+
∑

S ′∈Ω,S ′3i
T ′∈V(S ′)

pns−1
s!

[Mλ − Im]S ′,T ′

=− (n− t)
pnt−1
t!

λ+ (t− 1)
pnt−2
(t− 1)!

λ

t
−

pnt−1
(t− 1)!

λ

t
= 0.

Theorem 3.7. The generalized Shapley value of the form (3.3) is the unique value on
G ′ satisfying associated consistency, continuity, and the inessential game property
(provided that 0 < λ < 2/n).

Proof. The fact that the Shapley value has the 3 properties is established in
the above lemma. Here, we show the uniqueness part. Suppose a value φ on
Γ ′ also satisfies these three properties. From both the associated consistency
and the continuity, we derive that φ(N, v) = φ(N, v̄) holds for any general-
ized TU game v and its limit game (3.41) of the form v̄ = PDP−1 · v. Since
the limit game v̄ is an inessential game (by Lemma 3.2), the inessential game



3.4 conclusion 81

property of φ yields φi(N, v) = φi(N, v̄) = v̄({i}) for all i ∈ N. As the general-
ized Shapley value of the form (3.3) possesses these three properties too, the
same conclusion applies to the Shapley value, i.e., Sh ′i(N, v) = Sh ′i(N, v̄) =

v̄({i}) for all i ∈ N. In particular, φi(N, v) = Sh ′i(N, v) for all i ∈ N.

3.4 conclusion

In this chapter all characterizations are established in a generalized game
space. The difference compared with the classical game space is that, the
order of players entering into the game influences the worth of coalitions. So
for a fixed set of players, different permutations of this set may take different
worths, which makes the characterization more complicated. We give two
axiomatizations for the generalized Shapley value defined by Sanchez and
Bergantinos [70] in this chapter.

In the classical game space, Evans [20] introduced an approach, such that
the solution of the game determined endogenously as the expected outcome
of a reduction of the game to a two-person bargaining problem, is just the
Shapley value. However this approach is not suitable for the generalized
games. So we modify Evans’ approach in the following way: for any gen-
eralized game 〈N, v〉, firstly choose one permutation N ′ ∈ H(N), secondly
choose two subcoalitions S ′ and N ′ \ S ′ according to N ′, then choose two
leaders from these two subcoalitions separately. The two leaders play a two-
person bargaining game and promise to give the other players some part
of their earnings. We prove if all the choosing processes are subjected to
uniform distribution, and the standard solution on two-person generalized
games is used, then the expectation under the procedure is the generalized
Shapley value. This also means, the generalized Shapley value can be axiom-
atized by Evans’ consistency and the standardness on two-person games.

The second axiomatization uses the associated consistency, continuity and
inessential game property in the generalized game space. These three proper-
ties on the classical game space is used by Hamiache [32] to characterize the
Shapley value. Later Xu et al. [93] abandoned the complicated algebraic proof
given by Hamiache [32], and changed the proof by using a matrix approach.
Inspired by their axiomatization, we use an analogous matrix approach to
characterize the generalized Shapley value. The difference is that, instead of
a n by n matrix, we focus on a much larger matrix, which is m by m. The
main work in the uniqueness proof is to show that a certain m by m matrix
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is diagonalizable. The eigenvalues, eigenvectors and rank of this matrix are
studied in detail.



4
O T H E R VA L U E S I N T H E G E N E R A L I Z E D M O D E L

ABSTRACT - Also this chapter focuses on the generalized game space.
We introduce a so-called position-weighted value, which satisfies the effi-
ciency, null player property and a modified symmetry. It turns out that one
candidate of this value is the unique value satisfying 2-person standardness
and Evans’ consistency (with respect to a different procedure compared to
the one in Chapter 3). Moreover, the generalized ELS value, Core and Weber
Set are defined in this game space.

4.1 a new value in the generalized model

In this section we will introduce a new value in the generalized game model,
and compare it with the generalized Shapley value discussed in Chapter
3. We use the same notations as introduced in Chapter 3 concerning the
generalized game model.

4.1.1 Introduction to the new value

In the classical game 〈N, v〉 ∈ G, the Shapley value for player i ∈ N is re-
garded as the expectation of player i to participate in the game (see Section
1.3.2). As the form (1.7) shows, player i can get his marginal contribution

v(S∪ {i}) − v(S),

with probability pns for joining coalition S ⊆ N \ {i} of size s. In the general-
ized game 〈N, v〉 ∈ G ′, the generalized Shapley value (see (3.2)) can also be
regarded as an expectation: player i gets his average marginal contribution

1

s+ 1

s+1∑
h=1

(
v(S ′, ih) − v(S ′)

)
,

with probability pns /s! for joining the ordered coalition S ′ ∈ Ω, S ′ 63 i of size
s.

83
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Now instead of the average marginal contribution, we consider a weighted
one: Fix a generalized game 〈N, v〉 ∈ G ′. Suppose for an arbitrary ordered
coalition S ′ ∈ Ω,S ′ 63 i, the position of player i inserted into S ′ may have
different influences on the union. So, if h indicates the position of player i in
the union, we use weights wns+1(h), 1 6 h 6 s+ 1, to depict the influences.
The common restriction for the weights is as follows: for any 1 6 s 6 n,

0 6 wns (h) 6 1 for all 1 6 h 6 s, and
s∑
h=1

wns (h) = 1. (4.1)

In this way, player i can get his weighted marginal contribution

s+1∑
h=1

wns+1(h) ·
(
v(S ′, ih) − v(S ′)

)
, (4.2)

with probability pns /s! for joining the ordered coalition S ′ ∈ Ω, S ′ 63 i

of size s. Clearly, (4.2) coincides with the average marginal contribution if
wns+1(1) = w

n
s+1(2) = . . . = w

n
s+1(s+ 1) = 1/(s+ 1).

Following the idea of expectation (as the Shapley value on GN of the form
(1.7), as well as the generalized Shapley value on G ′N of the form (3.2)),
and using the weighted marginal contribution (4.2), we define the follow-
ing value:

Definition 4.1. A position-weighted value1 Ψ : G ′N → RN is defined by: for any
generalized TU game 〈N, v〉 with n > 3,

Ψi(N, v) =
∑
S ′∈Ω,
S ′ 63i

pns
s!
·
s+1∑
h=1

wns+1(h) ·
(
v(S ′, ih) − v(S ′)

)
for all i ∈ N, (4.3)

where for any 1 6 s 6 n, the weights {wns (h) | 1 6 h 6 s} satisfy condition (4.1).

We illustrate the difference between this value and the generalized Shapley
value by the following example:

Example 4.1. Consider a 3-person game 〈{1, 2, 3}, v〉 on G ′3. Let i = 1. By (4.3) we
derive

Ψ1(N, v) =
1

6
· [w33(1) · (v({123}) + v({132})) +w

3
3(2) · (v({213}) + v({312}))

+w33(3) · (v({231}) + v({321}))]

1 We call this new value the position-weighted value because the weighted marginal contribution
concerning the position of the inserted player is taken into consideration.
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+
1

6
· [w32(1) · (v({12}) + v({13})) +w

3
2(2) · (v({21}) + v({31}))]

−
1

6
· [v({23}) + v({32})] − 1

6
· [v({2}) + v({3})] + 1

3
w31(1) · v({1}).

While by (3.3),

Sh ′1(N, v) =
1

18
[v({123}) + v({132}) + v({213}) + v({312}) + v({231}) + v({321})]

+
1

12
[v({12}) + v({21}) + v({13}) + v({31})] −

1

6
[v({23}) + v({32})]

−
1

6
[v({2}) + v({3})] +

1

3
v({1}).

So Ψ1(N, v) = Sh ′1(N, v) if and only if w33(1) = w
3
3(2) = w

3
3(3) = 1/3, w

3
2(1) =

w32(2) = 1/2, and w31(1) = 1.

This example clearly shows that the position-weighted value Ψ coincides
with the generalized Shapley value for any generalized game 〈N, v〉, if for
any 1 6 s 6 n, we choose wns (h) = 1/s for all 1 6 h 6 s, i.e., the average
marginal contribution is used.

4.1.2 Properties of the new value

Fix a game 〈N, v〉 ∈ G ′. Suppose player i is a null player (see Definition
3.5 (iii)) in the game 〈N, v〉. Then v(S ′, ih) = v(S ′) for all S ′ ∈ Ω,S ′ 63 i,
1 6 h 6 s+ 1. According to formula (4.3), it holds Ψi(N, v) = 0 if i is a null
player. Hence we have

Lemma 4.1. The position-weighted value Ψ on G ′N satisfies the null player property.

Now we check the efficiency. It can be verified that, the value Ψ of the form
(4.3) can be rewritten as follows:

Ψi(N, v) =
∑
S ′∈Ω,
S ′3i

pns−1
(s− 1)!

·wns (h(i)) · v(S ′) −
∑
S ′∈Ω,
S ′ 63i

pns
s!
· v(S ′) for all i ∈ N.

(4.4)
Here h(i) indicates the position of player i in the coalition S ′ ∈ Ω,S ′ 3 i. We
prove the efficiency of the value Ψ by using this form. Remind that, a value
φ on G ′N is said to satisfy efficiency if

∑
i∈N

φi(N, v) =
1

n!

∑
N ′∈H(N)

v(N ′) = v̄(N) for all 〈N, v〉 ∈ G ′. (4.5)
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Lemma 4.2. The position-weighted value Ψ on G ′N satisfies efficiency.

Proof. Using formula (4.4) for the value Ψ, it holds,

∑
i∈N

Ψi(N, v) =
∑
i∈N

∑
S ′∈Ω,
S ′3i

pns−1
(s− 1)!

·wns (h(i)) · v(S ′) −
∑
i∈N

∑
S ′∈Ω,
S ′ 63i

pns
s!
· v(S ′)

=
∑
S ′∈Ω

pns−1
(s− 1)!

·
∑
i∈S

wns (h(i)) · v(S ′) −
∑
S ′∈Ω,
s6=n

∑
i 6∈S

pns
s!
· v(S ′).

(4.6)

Since {h(i) | i ∈ S} = {1, 2, . . . , s}, it holds
∑
i∈Sw

n
s (h(i)) =

∑s
h=1w

n
s (h) = 1.

Hence the total payoff (4.6) is equivalent to

∑
i∈N

Ψi(N, v) =
∑
S ′∈Ω

pns−1
(s− 1)!

· v(S ′) −
∑
S ′∈Ω,
s6=n

(n− s) · pns
s!

· v(S ′)

=
1

n!

∑
N ′∈H(N)

v(N ′) = v̄(N).

The last equality is according to (4.5). This proves the efficiency.

In order to study symmetry (see Definition 3.5 (ii)), we rewrite the value
Ψ as follows:

Ψi(N, v) =
∑
S ′∈Ω,
S ′ 63i,j

pns+1
(s+ 1)!

s+2∑
p,q=1,
p6=q

wns+2(p) · v(S
′, ip, jq) −

∑
S ′∈Ω,
S ′ 63i,j

pns
s!
· v(S ′)

+
∑
S ′∈Ω,
S ′ 63i,j

pns
s!

s+1∑
h=1

wns+1(h) · v(S
′, ih) −

∑
S ′∈Ω,
S ′ 63i,j

pns+1
(s+ 1)!

s+1∑
h=1

v(S ′, jh).

(4.7)

Suppose i and j are symmetric players in the game 〈N, v〉. Then v(S ′, ih) =
v(S ′, jh) for all S ′ 63 i, j and 1 6 h 6 s+ 1. So (4.7) is equivalent to

Ψi(N, v) =
∑
S ′∈Ω,
S ′ 63i,j

pns+1
(s+ 1)!

s+2∑
p,q=1,
p6=q

wns+2(p) · v(S
′, ip, jq) −

∑
S ′∈Ω,
S ′ 63i,j

pns
s!
· v(S ′)

+
∑
S ′∈Ω,
S ′ 63i,j

pns
s!

s+1∑
h=1

wns+1(h) · v(S
′, jh) −

∑
S ′∈Ω,
S ′ 63i,j

pns+1
(s+ 1)!

s+1∑
h=1

v(S ′, ih).
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And the difference between Ψi(N, v) and Ψj(N, v) is

Ψi(N, v) −Ψj(N, v) =
∑
S ′∈Ω,
S ′ 63i,j

pns+1
(s+ 1)!

s+2∑
p,q=1,
p6=q

(
wns+2(p) −w

n
s+2(q)

)
· v(S ′, ip, jq),

(4.8)
which is clearly not zero if for 1 6 p,q 6 s+ 2, p 6= q, it holds wns+2(p) 6=
wns+2(q). Hence we have the following lemma.

Lemma 4.3. The value Ψ on G ′N does not satisfy symmetry if there exist s, 1 6 s 6
n, such that wns (p) 6= wns (q) for some 1 6 p,q 6 s, p 6= q.

Having in mind that the value Ψ does not satisfy symmetry in general, we
consider the following stronger version of symmetry:

Definition 4.2. Given a game v ∈ G ′N, player i and j are called strongly symmetric
players if the following two conditions are fulfilled:

(i) v(S ′, ih) = v(S ′, jh) for all 1 6 h 6 s+ 1, S ′ ∈ Ω, S ′ 63 i, j;

(ii) v(S ′, ip, jq) = v(S ′, jp, iq) for all S ′ ∈ Ω, S ′ 63 i, j, 1 6 p,q 6 s+ 2, p 6= q.

A value φ is called strongly symmetric if φi(N, v) = φj(N, v) holds for any
strongly symmetric players i and j in the game v ∈ G ′N.

In the definition of strongly symmetric players, we had to add the new
condition (ii). This is because the coefficient wns (h(i)) for coalition S ′ ∈ Ω,
S ′ 3 i depends on a new parameter h(i), which indicates the position of
player i in the coalition S ′. By using (4.8) it is easy to verify that:

Lemma 4.4. The value Ψ on G ′N satisfies the strongly symmetry.

However, whether these three properties, efficiency, null player property
and strong symmetry (possibly together with the linearity) are sufficient to
axiomatize the new value is still an open problem. From another point of
view, since the weighted-position value is an asymmetric value, one may
refer to the axiomatization for the generalized weighted Shapley value [5]
(which is also asymmetric) to search for possible ways to axiomatize the
value Ψ on G ′. In the following subsection, we give an axiomatization to one
candidate of the position-weighted value.

4.1.3 Evans’ consistency and the new value

Recall Evans’ procedure introduced in Section 3.2. The approach taken is
that the solution of the game is to be determined endogenously as the ex-
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pected outcome of a reduction of the n-person game to a 2-person bargain-
ing problem. It turns out that if the whole process is subjected to uniform
distribution, and if the 2-person bargaining rule prescribes equal division
of the surplus, then there is a unique consistent allocation which is just the
classical Shapley value. This is the first result in Evans’ paper [20]. Later in-
stead of being partitioned into two coalitions, Evans considered the model
that players in the n-person game 〈N, v〉 are partitioned into n− 1 coalitions.
More precisely, two players i, j ∈ N are randomly chosen to merge, with
each (unordered) pair (i, j) having equal probability of being chosen, and the
two merged players have equal probability of being chosen as representative.
Evans proved that the consistency together with the standard solution for
two-player games, uniquely characterize the Shapley value. The proof of the
result relies on the fact that the value characterized by these two properties
turns out to satisfy efficiency, linearity, symmetry and null player property.
These four properties axiomatize the Shapley value in [74].

In Chapter 3 we successfully extended Evans’ first approach, from the
classical game model to the generalized game model in which orders of
coalitions are taken into consideration. Now we try to use Evans’ second ap-
proach (instead of partitioningN into S andN\S, randomly choose two play-
ers in N to merge) to characterize the generalized Shapley value. However
the value we obtained is not the generalized Shapley value. In the following
we will describe the whole process more precisely.

Consider any generalized game 〈N, v〉 ∈ G ′. Following Evans’ procedure,
two players are randomly chosen to merge, with each ordered pair having
equal probability (n(n− 1))−1 of being chosen, and the two merged players
have equal probability of being chosen as a representative. Let γ be the prob-
ability distribution that determines the selection of the two merged players
and the representative of these two players.

For any generalized game 〈N, v〉, fix a pair of players i and j, i, j ∈ N, i 6= j.
Denote by 〈N(ij), v(ij)〉 the (n− 1)-person game, where the player set N(ij)

is derived from N by merging player i and j, and v(ij) is defined as follows.
To avoid the confusion of the player set, in this subsection, we use ΩN to
denote the set of all ordered coalitions with player set N, and ΩN(ij)

the set
of all possible ordered coalitions with player set N(ij), i.e.,

ΩN = {S ′ ∈ H(S) | S ⊆ N} and ΩN(ij)
= {S ′ ∈ H(S) | S ⊆ N(ij)}.
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The corresponding characteristic function v(ij) : ΩN(ij)
→ R is defined by

v(ij)(S
′) =

v(S
′) if S ′ ∈ ΩN(ij)

and S ′ 63 (ij);

v(T ′) if S ′ ∈ ΩN(ij)
and S ′ 3 (ij),

(4.9)

where T ′ =
(
S ′ \ {(ij)}, ih

S ′(ij), jh
S ′(ij)+1

)
. Here hS

′
(ij) means the position

of player (ij) in S ′. So coalition T ′ is derived by deleting player (ij) from
coalition S ′, while adding player i to the same position as (ij) in S ′ and
adding player j just after i. In this way, we have t = s+ 1.

Let φ be a value for the game 〈N(ij), v(ij)〉. Then denote by
φ(ij)(N(ij), v(ij)) the payoff to the merged player (ij), and φk(N(ij), v(ij))
the payoff to the single player k ∈ N \ {(ij)}.

For any real number a ∈ R, define

a+ =

a if a > 0;

0 if a 6 0.

Reminding Evans’ consistency (see Definition 3.6) and the standard solution
for 2-person games (see (3.6)), we have the following result for a value on
the whole set G ′ of generalized games.

Theorem 4.1. Let φ be a value for the generalized games 〈N, v〉 on G ′. Then φ
satisfies Evans’ consistency with respect to γ and is the standard solution for 2-
person games, if and only if φ(N, v) = Ψ(N, v) (see (4.3)), with specifically chosen
wns (h), 1 6 h 6 s, defined recursively as follows:

wns (h) =
1+ 2(s− h− 1)+

2(n− 2)
·wn−1s−1 (h)+

1+ 2(h− 2)+
2(n− 2)

·wn−1s−1 (h−1)+m(n, s,h),

(4.10)
where

m(n, s,h) =


−1/(n(n− 2)) if s = n;

0 if s = n− 1;

(n− s− 1) ·wn−1s (h)/(n− 2) if 1 6 s 6 n− 2.

The initial condition is

w21(1) = 1,w
2
2(1) = w

2
2(2) =

1

2
.
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In the recursive formula (4.10), we require wab(c) = 0 if b > a, or if c < 0
or c > b.
Proof of Theorem 4.1. Suppose φ satisfies Evans’ consistency with respect to γ
and the 2-person standardness. We prove φ = Ψ for all generalized games
〈N, v〉 by induction on n. Clearly φ(N, v) = Ψ(N, v) when n = 2, because
of the 2-person standardness. Suppose now φ coincides with Ψ for all gen-
eralized games with up to (n− 1)-person games, n > 3, and consider the
n-person case.

Note that, the two merged players are ordered and chosen form the grand
coalition, hence player i can either be chosen as one of the two merged play-
ers, or remains as a single player. If i is not chosen to merge, then some other
players k and lwould be chosen to merge with probability 1/n(n− 1), where
k, l ∈ N and k 6= l 6= i. In this way, player i would get φi(N(kl), v(kl)). If i is
chosen to merge with another player k ∈ N \ {i} with probability 1/n(n− 1),
then either i is in front of k or i is after k, and each of these two players has
the same probability to be the leader. In this setting, for all i ∈ N, player i’s
expected payoff xi is determined by the equation:

xi =
1

n(n− 1)

∑
k∈N\{i}

[
1

2

(
φ(ik)(N(ik), v(ik)) − xk

)
+
1

2
xi

]

+
1

n(n− 1)

∑
k∈N\{i}

[
1

2

(
φ(ki)(N(ki), v(ki)) − xk

)
+
1

2
xi

]

+
1

n(n− 1)

∑
k,l∈N\{i},
k6=l

φi(N(kl), v(kl)),

which is equivalent to,

xi =
1

n(n− 1)

∑
k∈N\{i}

(
1

2
φ(ik)(N(ik), v(ik)) +

1

2
φ(ki)(N(ki), v(ki)) − xk + xi

)

+
1

n(n− 1)

∑
k,l∈N\{i},
k6=l

φi(N(kl), v(kl)).

(4.11)

We first show by induction that the solution of (4.11) satisfies the generalized
efficiency:

∑
i∈N xi = v̄(N). Clearly, when n = 2 the generalized efficiency

holds. Supposing that, for any game with up to (n− 1) players, the payoff x
satisfies the generalized efficiency, we consider the n-person case.
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Substituting (4.11) into the summation
∑
i∈N xi. Using the fact that,∑

i∈N

∑
k∈N\{i}

φ(ik)(N(ik), v(ik)) =
∑
i∈N

∑
k∈N\{i}

φ(ki)(N(ki), v(ki)) and,

∑
i∈N

∑
k∈N\{i}

xk =
∑
i∈N

∑
k∈N\{i}

xi ,

we have: ∑
i∈N

xi =
1

n(n− 1)

∑
i∈N

∑
k∈N\{i}

φ(ik)(N(ik), v(ik))

+
1

n(n− 1)

∑
i∈N

∑
k,l∈N\{i},
k6=l

φi(N(kl), v(kl)).
(4.12)

Since ∑
i∈N

∑
k∈N\{i}

φ(ik)(N(ik), v(ik)) =
∑

S ′∈ΩN ,
s=2

φS ′(N(S ′), v(S ′)),

we can rewrite (4.12) as follows:

1

n(n− 1)

∑
S ′∈ΩN ,
s=2

φS ′(N(S ′), v(S ′)) +
1

n(n− 1)

∑
i∈N

∑
S ′∈ΩN ,S ′ 63i,

s=2

φi(N(S ′), v(S ′))

=
1

n(n− 1)

∑
S ′∈ΩN ,
s=2

φS ′(N(S ′), v(S ′)) +
∑
i∈N\S

φi(N(S ′), v(S ′))


=

1

n(n− 1)

∑
S ′∈ΩN ,
s=2

v̄S ′(N(S ′)) = v̄(N).

The second equality is due to the induction hypothesis, since 〈NS ′ , vS ′〉 with
S ′ ∈ ΩN, s = 2 is an (n− 1)-person game. To show the last equality, consider
an arbitrary permutation N ′ ∈ H(N), say N ′ = {(1, 2, 3, 4, . . . ,n)}. The coef-
ficient of v(N ′) in v̄(N) is 1/n!.While on the left hand side, v(N ′) appears
in v̄(12)(N(12)) + v̄(23)(N(23)) + . . .+ v̄(n−1;n)(N(n−1;n)). So the coefficient
of v(N ′) in

∑
S ′∈ΩN,s=2 v̄S ′(N(S ′)) is (n− 1) · ((n− 1)!)−1. This proves the
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efficiency. So in view of efficiency (
∑
i∈N xi = v̄(N)), we can rewrite (4.11)

in the following way:

xi =
1

2n(n− 2)

∑
k∈N\{i}

(
φ(ik)(N(ik), v(ik)) +φ(ki)(N(ki), v(ki))

)
+

1

n(n− 2)

∑
k,l∈N\{i},
k6=l

φi(N(kl), v(kl)) −
1

n(n− 2)
v̄(N).

(4.13)

Denote by R1 the first summation and R2 the second summation in (4.13),
then

xi =
1

2n(n− 2)
· R1 +

1

n(n− 2)
· R2 −

1

n(n− 2)
· v̄(N). (4.14)

Now v̄(N) can be regarded as a constant, so all the games on the right
hand side of this equation that need further discussion, say 〈N(ik), v(ik)〉,
〈N(ki), v(ki)〉 and 〈N(kl), v(kl)〉, are (n− 1)-person games. By the induction
hypothesis, φ coincides with Ψ for all generalized games with up to (n− 1)-
persons. So we have

φ(ik)(N(ik), v(ik))

=
∑

S ′∈ΩN(ik)
,

S ′3(ik)

pn−1s−1

(s− 1)!
·wn−1s (h(ik)) · v(ik)(S ′) −

∑
S ′∈ΩN(ik)

,

S ′ 63(ik)

pn−1s

s!
· v(ik)(S ′);

=
∑

T ′∈ΩN ,T ′3i,k,
h(k)=h(i)+1,16h(i)6t−1

pn−1t−2

(t− 2)!
·wn−1t−1 (h(i)) · v(T

′) −
∑

S ′∈ΩN ,
S ′ 63i,k

pn−1s

s!
· v(S ′).

(4.15)

The last equality is due to the characteristic function v(ik) defined by (4.9).
Similarly we can derive,

φ(ki)(N(ki), v(ki))

=
∑

T ′∈ΩN ,T ′3k,i,
h(k)=h(i)−1,26h(i)6t

pn−1t−2

(t− 2)!
·wn−1t−1 (h(i) − 1) · v(T

′) −
∑

S ′∈ΩN ,
S ′ 63k,i

pn−1s

s!
· v(S ′).

(4.16)
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and,

φi(N(kl), v(kl))

=
∑

T ′∈ΩN ,T ′3i,k,l,
h(l)=h(k)+1,16h(k)6t−1

pn−1t−2

(t− 2)!
·wn−1t−1 (h(i)) · v(T

′) −
∑

T ′∈ΩN ,
T ′ 63i,T ′3k,l

pn−1t−1

(t− 1)!
· v(T ′)

+
∑

S ′∈ΩN ,
S ′3i,S ′ 63k,l

pn−1s−1

(s− 1)!
·wn−1s (h(i)) · v(S ′) −

∑
S ′∈ΩN ,
S ′ 63i,k,l

pn−1s

s!
· v(S ′).

(4.17)

Substituting (4.15), (4.16) and (4.17) into (4.13), we find

R1 =
∑

S ′∈ΩN ,S ′3i,
s>2,h(i) 6=s

pn−1s−2

(s− 2)!
·wn−1s−1 (h(i)) · v(S

′)

+
∑

S ′∈ΩN ,S ′3i,
s>2,h(i) 6=1

pn−1s−2

(s− 2)!
·wn−1s−1 (h(i) − 1) · v(S

′)

− 2 ·
∑

S ′∈ΩN ,S ′ 63i,
s6n−2

(
n− s− 1

1

)
· p
n−1
s

s!
· v(S ′),

where in the last term in the latter equality,
(
n−s−1
1

)
is the possibilities in

choosing player k, k 6∈ S ′, k 6= i. Now we simplify R2. Let

R2 =T1 + T2 + T3 + T4

=
∑

k,l∈N\{i},
k6=l

∑
S ′∈ΩN ,S ′3i,k,l,

h(l)=h(k)+1,16h(k)6s−1

pn−1s−2

(s− 2)!
·wn−1s−1 (h(i)) · v(S

′)

+
∑

k,l∈N\{i},
k6=l

∑
S ′∈ΩN ,
S ′3i,S ′ 63k,l

pn−1s−1

(s− 1)!
·wn−1s (h(i)) · v(S ′)

−
∑

k,l∈N\{i},
k6=l

∑
S ′∈ΩN ,S ′ 63i,S ′3k,l,

h(l)=h(k)+1,16h(k)6s−1

pn−1s−1

(s− 1)!
· v(S ′)

−
∑

k,l∈N\{i},
k6=l

∑
S ′∈ΩN ,
S ′ 63i,k,l

pn−1s

s!
· v(S ′),
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where T1 to T4 denote the four summations in R2. We treat the four summa-
tions separately: Firstly for T1. In this equation, the two cases h(kl) < h(i)

and h(kl) > h(i) are treated separately. If h(kl) < h(i) in S ′, then there are
(h(i) − 2)+ different choices in choosing (kl), since k and l should be next to
each other with k in front of l; so if h(kl) > h(i), the number of choices for
(kl) is (s− h(i) − 1)+. Hence

T1 =
∑

S ′∈ΩN ,S ′3i,
s>3

(h(i) − 2)+ ·
pn−1s−2

(s− 2)!
·wn−1s−1 (h(i) − 1) · v(S

′)

+
∑

S ′∈ΩN ,S ′3i,
s>3

(s− h(i) − 1)+ ·
pn−1s−2

(s− 2)!
·wn−1s−1 (h(i)) · v(S

′);

Similarly we can get

T2 =
∑

S ′∈ΩN ,S ′3i,
s6n−2

2 ·
(
n− s

2

)
·
pn−1s−1

(s− 1)!
·wn−1s (h(i)) · v(S ′);

T3 = −
∑

S ′∈ΩN ,S ′ 63i,
s>2

(s− 1) ·
pn−1s−1

(s− 1)!
· v(S ′);

T4 = −
∑

S ′∈ΩN ,S ′ 63i,
s6n−3

2 ·
(
n− s− 1

2

)
· p
n−1
s

s!
· v(S ′).

Now substituting these formulas for R1, R2 into (4.14), we obtain a formula
for xi, which has the following form:

xi =
∑

S ′∈ΩN ,
S ′3i

Ans (h(i)) · v(S ′) −
∑

S ′∈ΩN ,
S ′ 63i

Bns · v(S ′),

where by R1, T3 and T4,

Bns =
1

2n(n− 2)
· 2 ·

(
n− s− 1

1

)
· p
n−1
s

s!
+

1

n(n− 2)
· (s− 1) ·

pn−1s−1

(s− 1)!

+
1

n(n− 2)
· 2 ·

(
n− s− 1

2

)
· p
n−1
s

s!
=
pns
s!

.
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Now we discuss Ans (h) based on R1, T1 and T2. When s = n, for any 1 6
h 6 n,

Ann(h) =
1

2n(n− 2)
·
pn−1n−2

(n− 2)!
·wn−1n−1(h) +

1

2n(n− 2)
·
pn−1n−2

(n− 2)!
·wn−1n−1(h− 1)

+
1

n(n− 2)
· (h− 2)+ ·

pn−1n−2

(n− 2)!
·wn−1n−1(h− 1)

+
1

n(n− 2)
· (n− h− 1)+ ·

pn−1n−2

(n− 2)!
·wn−1n−1(h) −

1

n(n− 2)
· 1
n!

=
pnn−1
(n− 1)!

·wnn(h).

The last equality is according to (4.10). When s = n−1, for any 1 6 h 6 n−1,

Ann−1(h) =
1

2n(n− 2)
·
pn−1n−3

(n− 3)!
·wn−1n−2(h) +

1

2n(n− 2)
·
pn−1n−3

(n− 3)!
·wn−1n−2(h− 1)

+
1

n(n− 2)
· (h− 2)+ ·

pn−1n−3

(n− 3)!
·wn−1n−2(h− 1)

+
1

n(n− 2)
· (n− h− 1)+ ·

pn−1n−3

(n− 3)!
·wn−1n−1(h) =

pnn−2
(n− 2)!

·wnn−1(h).

The last equality is due to (4.10). When 3 6 s 6 n− 2, for any 1 6 h 6 s,

Ans (h) =
1

2n(n− 2)
·
pn−1s−2

(s− 2)!
·wn−1s−1 (h) +

1

2n(n− 2)
·
pn−1s−2

(s− 2)!
·wn−1s−1 (h− 1)

+
1

n(n− 2)
· (h− 2)+ ·

pn−1s−2

(s− 2)!
·wn−1s−1 (h− 1)

+
1

n(n− 2)
· (s− h− 1)+ ·

pn−1s−2

(s− 2)!
·wn−1s−1 (h)

+
1

n(n− 2)
· 2 ·

(
n− s

2

)
·
pn−1s−1

(s− 1)!
·wn−1s (h) =

pns−1
(s− 1)!

·wns (h).

The last equality is according to (4.10). When s = 2, we have

An2 (1) =
1

2n(n− 2)
·
pn−10

0!
·wn−11 (1) +

1

n(n− 2)
· 2 ·

(
n− 2

2

)
·
pn−11

1!
·wn−12 (1)

=
pn1
1!
·wn2 (1) and,
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An2 (2) =
1

2n(n− 2)
·
pn−10

0!
·wn−11 (1) +

1

n(n− 2)
· 2 ·

(
n− 2

2

)
·
pn−11

1!
·wn−12 (2)

=
pn1
1!
·wn2 (2).

When s = 1,

An1 (1) =
1

n(n− 2)
· 2 ·

(
n− 1

2

)
·
pn−10

0!
·wn−11 (1) =

pn0
0!
·wn1 (1).

Hence xi = Ψi(N, v) for any i ∈ N. This finishes the whole proof. �

If the recursive formula (4.10) holds, then for any 3-person game
〈{1, 2, 3}, v〉 on G ′ we have:

Ψ1(N, v) =
5

72
[v({123}) + v({132}) + v({231}) + v({321})] +

1

36
[v({213}) + v({312})]

+
1

12
[v({12}) + v({21}) + v({13}) + v({31})] −

1

6
[v({23}) + v({32})]

−
1

6
[v({2}) + v({3})] +

1

3
v({1}).

(4.18)

It shows how the “position factor” affects the value, that is, player 1 is more
“important” if he is in the first or the last position of coalition S ′ 3 1.

Concerning the recursive formula (4.10), we have the following result:

Lemma 4.5. The following relations holds for the coefficients wns (h) defined in
Theorem 4.1: for all n > 3,

wns (h) = w
n
s (s+ 1− h) for all 1 6 s 6 n, 1 6 h 6 s. (4.19)

Proof. We prove by induction on n that (4.19) holds for all 1 6 s 6 n− 2,
1 6 h 6 s. The other two cases s = n,n− 1 can be derived similarly. Clearly
(4.19) holds when n = 3. Suppose

wn−1s (h) = wn−1s (s+ 1− h) for all 1 6 s 6 n− 3, 1 6 h 6 s,

then the following relations also hold:

wn−1s−1 (h) = w
n−1
s−1 (s− h) for all 2 6 s 6 n− 2, 1 6 h 6 s− 1;

wn−1s−1 (h− 1) = wn−1s−1 (s− (h− 1)) for all 2 6 s 6 n− 2, 2 6 h 6 s.
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By (4.10) and the induction hypothesis, for all 2 6 h 6 s− 1, we find

2(n− 2) ·wns (s+ 1− h)

=[1+ 2(h− 2)+] ·wn−1s−1 (s+ 1− h) + [1+ 2(s− h− 1)+] ·wn−1s−1 (s− h)

+ 2(n− s− 1) ·wn−1s (s+ 1− h)

=[1+ 2(h− 2)+] ·wn−1s−1 (h− 1) + [1+ 2(s− h− 1)+] ·wn−1s−1 (h)

+ 2(n− s− 1) ·wn−1s (h) = 2(n− 2) ·wns (h)

The formula (4.18) for 3-person games clearly exemplifies the claim of
Lemma 4.5.

4.2 generalized els value

Remind the ELS value introduced in Section 1.3.5, which is defined in the
classical game space GN. The formula of the ELS value (see (1.13)), can be
rewritten as follows:

Φi(N, v) =
∑
S⊆N,
S3i

(
pns−1 · b

n
s

)
· v(S) −

∑
S⊆N,
S 63i

(pns · bns ) · v(S). (4.20)

where B = {bns | n ∈ N \ {0, 1}, s = 1, 2, . . . ,n} with bnn = 1 is a collection
of constants. With respect to the efficiency, linearity, and symmetry in the
generalized game space G ′N, we extend this ELS value to the generalized
game space in the following way:

Theorem 4.2. A value Φ ′ : G ′N → RN satisfies the generalized efficiency, linearity
and the generalized symmetry, if and only if there exists a (unique) collection of
constants B = {bns | n ∈N \ {0, 1}, s = 1, 2, . . . ,n} with bnn = 1 such that, for any
i ∈ N,

Φ ′i(N, v) =
∑
S⊆N,
S3i

(
pns−1 · b

n
s

)
· 1
s!

∑
S ′∈H(S)

v(S ′)−
∑
S⊆N,
S 63i

(pns · bns ) ·
1

s!

∑
S ′∈H(S)

v(S ′).

(4.21)

Proof. Linearity is clear. Suppose the pair i, j ∈ N are symmetric players.
Then v(S ′, ih) = v(S ′, jh) for all S ′ ∈ Ω, S ′ 63 i, j, h ∈ {1, 2, . . . , s+ 1} gives∑

S⊆N,
S3i,S 63j

∑
S ′∈H(S)

v(S ′) =
∑
S⊆N,
S3j,S 63i

∑
S ′∈H(S)

v(S ′).
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Hence

Φ ′i(N, v) −Φ ′j(N, v) =

 ∑
S⊆N,
S3i,S 63j

−
∑
S⊆N,
S3j,S 63i

pns−1 · bns · 1s! ∑
S ′∈H(S)

v(S ′) = 0.

This proves the generalized symmetry. Next we show that Φ ′ satisfies the
generalized efficiency: for any v ∈ G ′N,∑

i∈N
Φ ′i(N, v)

=
∑
i∈N

∑
S⊆N,
S3i

(
pns−1 · b

n
s

)
· 1
s!

∑
S′∈H(S)

v(S ′) −
∑
S⊆N,
S63i

(pns · bns ) ·
1

s!

∑
S′∈H(S)

v(S ′)


=
∑
S⊆N
S6=∅

∑
i∈S

(
pns−1 · b

n
s

)
· 1
s!

∑
S′∈H(S)

v(S ′) −
∑
i 6∈S

(pns · bns ) ·
1

s!

∑
S′∈H(S)

v(S ′)


=
∑
S⊆N
S6=∅

s ·
(
pns−1 · b

n
s

)
· 1
s!

∑
S′∈H(S)

v(S ′) −
∑
S$N
S6=∅

(n− s) · (pns · bns ) ·
1

s!

∑
S′∈H(S)

v(S ′)

=
1

n!

∑
N′∈H(N)

v(N ′).

This completes the sufficiency proof. Now we show the uniqueness. Suppose
there is another value φ on G ′N satisfying the generalized efficiency, linearity
and the generalize symmetry. With every ordered coalition T ′ ∈ Ω, T ′ 6= ∅,
there is an associated zero-one game 〈N, eT ′〉 defined by eT ′(T ′) = 1 and
eT ′(S

′) = 0 for all S ′ 6= T ′. Since v(S ′) =
∑
T⊆N

∑
T ′∈H(T) v(T

′) · eT ′(S ′) for
all S ′ ∈ Ω, all v ∈ G ′N, by linearity we have

φi(N, v) = φi(N,
∑
T⊆N

∑
T ′∈H(T)

v(T ′) · eT ′) =
∑
T⊆N

∑
T ′∈H(T)

v(T ′) ·φi(N, eT ′),

for all i ∈ N. Next we determine φi(N, eT ′). Fixing the coalition T ′ ∈ Ω,
by symmetry we know that players in T ′ as well as players outside T ′ get
the fixed payoff respectively, which only depends on the size of T ′. Then by
efficiency, (4.21) is derived.

Remind that in Section 1.3.5, we introduced a new interpretation of the
classical ELS value, given by Nembua [56]. Nembua regards the classical ELS
value as a procedure to distribute the marginal contribution of the incoming
player among the incoming players and the original members of a coalition
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S. Here we generalize this point of view from the classical game space GN to
the generalized game space G ′N.

Theorem 4.3. A value φ on G ′N satisfies the generalized efficiency, linearity and
symmetry if and only if there exists a (unique) collection of constants θ(s)ns=1 with
θ(1) = 1 such that for any i ∈ N,

φi(N, v) =
∑
S⊆N,
S3i

pns−1 ·A
θ(s)
i (S). (4.22)

Here Aθ(s)i (S) = v({i}) if s = 1, otherwise if s > 1

A
θ(s)
i (S) =θ(s) ·

 1
s!

∑
S′∈H(S)

v(S ′) −
1

(s− 1)!

∑
S′∈H(S)

v(S ′ \ {i})


+
1− θ(s)

s− 1

∑
j∈S\{i}

 1
s!

∑
S′∈H(S)

v(S ′) −
1

(s− 1)!

∑
S′∈H(S)

v(S ′ \ {j})

 .

Proof. Substituting the formula for Aθ(s)i into (4.22), and letting θ(s+ 1) =

bnn−s for all 0 6 s 6 n− 1, then it is easy to find that (4.22) coincides with
(4.21).

Besides this generalization, the notion of potential which is discussed in
Section 2.1, can also be generalized to the new game space G ′N. Analogous
to Definition 2.1, a function Q ′ : G ′ → R is called a potential function (asso-
ciated with any three sequences α,β,γ of real numbers), if Q ′(∅) = 0 and for
any game 〈N, v〉,

∑
i∈N

(DiQ
′)(N, v) =

1

n!

∑
N ′∈H(N)

v(N ′).

Here the i-th component DiQ ′ : G ′ → R of the modified gradient DQ ′ =
(DiQ

′)i∈N is given by

(DiQ
′)(N, v) = αnQ ′(N, v)−βnQ ′(N \ {i}, v)−

γn

n

∑
j∈N

Q ′(N \ {j}, v). (4.23)

The following results are based on Theorem 2.2. We omit the proof since it
is similar to the proof of Theorem 2.2.

Theorem 4.4. Suppose the value φ on G ′N has a modified potential representation
of the form (4.23) (associated with three sequences α,β,γ of real numbers). Then
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(i) the corresponding potential function Q ′ : G ′ → R satisfies the recursive for-
mula

Q ′(N, v) =
1

nαn ·n!

∑
N ′∈H(N)

v(N ′) +
βn + γn
nαn

∑
j∈N

Q ′(N \ {j}, v).

for all v ∈ G ′N with n > 2. This recursive relationship for the potential func-
tion Q ′ : G ′ → R is solved by

Q ′(N, v) =
∑
S⊆N

pns−1q
n
s ·

1

s!

∑
S ′∈H(S)

v(S ′) for all v ∈ G ′N,

where p and q are sequences defined by (2.6) and (2.7) separately.

(ii) the underlying value φ on G ′ is determined as follows:

φi(N, v) =
1

n ·n!

∑
N ′∈H(N)

v(N ′)

+βn
∑

S$N\{i}

pns q
n−1
s+1

1

(s+ 1)!

∑
S ′∈H(S)

s+1∑
h=1

v(S ′, ih)

−βn
∑

S⊆N\{i}

pns q
n−1
s

1

s!

∑
S ′∈H(S)

v(S ′) for all v ∈ G ′N, all i ∈ N.

Moreover without changing the proof, it is easy to verify that the state-
ments of Theorem 2.4 hold in the generalized game space G ′N, if we replace
the modified potential representation of the form (2.3) by form (4.23).

Recall that in Section 3.2, we used a procedure (based on a procedure in-
troduced by Evans [20] in the classical game space) to obtain the generalized
Shapley value. More precisely for game v ∈ G ′N, in the first step, one permu-
tation N ′ is fixed; in the second step, two subcoalitions S ′ and N ′ \ S ′ are
chosen according to N ′; in the next step each subcoalition selects one leader,
and between the two leaders a bargaining process is defined. The rule is that
the solution of the two-person bargaining process is standard (see Definition
3.7), and each leader gives the remaining players in his own subcoalition
a certain amount of utility. However if we change the standard two-person
bargaining solution (3.7) by

ηN
′

S ′ (v) = b
n
s · v(S ′) +

1

2

(
bnn · v̄(N) − bns · v(S ′) − bnn−s · v(N ′ \ S ′)

)
;

ηN
′

N ′\S ′(v) = b
n
n−s · v(N ′ \ S ′) +

1

2

(
bnn · v̄(N) − bnn−s · v(N ′ \ S ′) − bns · v(S ′)

)
,
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then similar arguments as in the proof of Theorem 3.1 lead to the following
result:

Theorem 4.5. A feasible payoff vector x ∈ Rn is consistent with (f,η) in the
generalized game 〈N, v〉 if and only if x is the generalized ELS value (4.21).

4.3 generalized core and weber set

In this section, we also extend two well-know sets of solutions for classical co-
operative games to generalized cooperative games: The Core (see (1.4)) and
the Weber Set (see Section 1.3.3). Denote by C(v) and W(v) the Core and the
Weber Set respectively, for the classical game v ∈ G. We now introduce the
generalized Core C ′(v), and the generalized Weber Set W ′(v) respectively,
for the generalized game v ∈ G ′. Note that in the classical case, C(v) ⊂W(v)

for any v ∈ GN, and the equality holds when v is a convex game, i.e., when
v(S∪ {i}) − v(S) 6 v(T ∪ {i}) − v(T) for any i ∈ N, S ⊆ T ⊆ N \ {i}. We will dis-
cuss in the following, whether these relations hold in the generalized game
space.

Definition 4.3. For any generalized game v ∈ G ′N, the generalized Core C ′(v) is
the set of vectors x ∈ Rn, satisfying

∑
i∈N

xi =
1

n!

∑
N ′∈H(N)

v(N ′) and

∑
i∈S

xi >
1

s!

∑
S ′∈H(S)

v(S ′) for any S $ N.

Denote by ΠN the set of all permutations π : N → N on the player set N.
Given a permutation π ∈ ΠN, and assigning a rank number π(i) to player i,
we denote by πi the set of all predecessors, i.e., πi = {j ∈ N | π(j) 6 π(i)}. The
marginal contributionmπ(v) on RN of v ∈ G ′N with respect to a permutation
π ∈ ΠN is given by

mπi (v) =
1

|πi|!

∑
S ′∈H(πi)

v(S ′) −
1

(|πi|− 1)!

∑
S ′∈H(πi\{i})

v(S ′) for any i ∈ N.
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Definition 4.4. The generalized Weber Set for any v ∈ G ′N, is the convex hull of
all marginal contribution vectors:

W ′(v) = Conv{mπ(v) | π ∈ ΠN}.

We show now, based on the proof given by Derks [11], that also in the
generalized game space G ′, the core is always a subset of the Weber set. We
need the following lemma from convex analysis.

Lemma 4.6. [67] (Separation Theorem) Let Z ⊆ Rn be a closed convex set and
let x ∈ Rn \ Z. Then there is a vector y ∈ Rn such that y · z > y · x for every
z ∈ Z.

Theorem 4.6. The conclusion C ′(v) ⊆W ′(v) holds for any v ∈ G ′N.

Proof. Suppose there is an x ∈ C ′(v) \W ′(v). By the Separation Theorem,
there exists a vector y ∈ RN such that w · y > x · y for every w ∈ W ′(v). In
particular mπ · y > x · y for every π ∈ ΠN. Let π ∈ ΠN with yπ(1) > yπ(2) >
. . . > yπ(n). By substituting the formula of mπi (v) we have,

mπ · y =

n∑
i=1

yπ(i)

 1

|πi|!

∑
S ′∈H(πi)

v(S ′) −
1

(|πi|− 1)!

∑
S ′∈H(πi\{i})

v(S ′)


=yπ(n) ·

1

n!

∑
N ′∈H(N)

v(N ′) − yπ(1) · v(∅)

+

n−1∑
i=1

(yπ(i) − yπ(i+1)) ·
1

|πi|!

∑
S ′∈H(πi)

v(S ′).

Since x ∈ C ′(v),

mπ · y 6yπ(n) ·
n∑
j=1

xπ(j) +

n−1∑
i=1

(yπ(i) − yπ(i+1))

i∑
j=1

xπ(j)

=

n∑
i=1

yπ(i)

i∑
j=1

xπ(j) −

n∑
i=2

yπ(i)

i−1∑
j=1

xπ(j)

=

n∑
i=1

yπ(i)xπ(i) = x · y,

which contradicts our assumption.

Next we shown the Core and the Weber Set coincide for convex general-
ized games.
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Definition 4.5. A game v ∈ G ′N is called convex if for any i ∈ N, S ⊆ T ⊆ N \ {i},

1

(s+ 1)!

∑
S ′∈H(S)

s+1∑
h=1

(
v(S ′, ih) − v(S ′)

)

6
1

(t+ 1)!

∑
T ′∈H(T)

t+1∑
h=1

(
v(T ′, ih) − v(T ′)

)
.

This definition is a generalization of the classical convex game. Now we
can prove the following equivalence relation, based on Shapley [77] and Ichi-
ishi [33].

Theorem 4.7. For any v ∈ G ′N, the game v is convex if and only if C ′(v) =W ′(v).

Proof. Suppose v ∈ G ′N is convex. By Theorem 4.6, it is sufficient to show
that each marginal vector mπ(v) is in the core. Let S ⊆ N be arbitrary, say
S = {i1, . . . , is}. For any 1 6 k 6 s, define Sk = {i1, . . . , ik}, Tk = {1, . . . , ik}.
By Definition 4.5,

1

|Sk|!

∑
S ′∈H(S)

v(S ′) −
1

(|Sk|− 1)!

∑
S ′∈H(Sk−1)

v(S ′)

6
1

|Tk|!

∑
T ′∈H(T)

v(T ′) −
1

(|Tk|− 1)!

∑
T ′∈H(Tk−1)

v(T ′)

= mπik(v).

Summing these inequalities from k = 1 to k = s yields,

1

s!

∑
S ′∈H(S)

v(S ′) 6
s∑
k=1

mπik(v) =
∑
i∈S

mπi (v),

which gives mπ(v) ∈ C ′(v).
For the converse, suppose mπ(v) ∈ C ′(v) for any v ∈ G ′N, and we let

S, T ⊆ N be arbitrary. Order the players of N as follows:

N = {i1, . . . , ik︸ ︷︷ ︸
S∩T

, ik+1, . . . , il︸ ︷︷ ︸
T\S

, il+1, . . . , is︸ ︷︷ ︸
S\T

, is+1, . . . , in︸ ︷︷ ︸
N\(S∪T)

},
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which gives a permutation πwith corresponding vectorm(v) = mπ(v). Since
m(v) ∈ C ′(v),

1

s!

∑
S ′∈H(S)

v(S ′) 6
∑
i∈S

mi(v) =

k∑
j=1

mij(v) +

s∑
j=l+1

mij(v)

=
1

|πik |

∑
S ′∈H(πik)

v(S ′) −
1

|πil |

∑
S ′∈H(πil)

v(S ′) +
1

|πis |

∑
S ′∈H(πis)

v(S ′)

=
1

|S∩ T |!
∑

S ′∈H(S∩T)
v(S ′) −

1

|T |!

∑
S ′∈H(T)

v(S ′) +
1

|S∪ T |!
∑

S ′∈H(S∪T)
v(S ′).

Hence v is convex.

4.4 conclusion

All characterizations in this chapter are given in the generalized game space.
We define a so-called position-weighted value, which satisfies the efficiency,
null player property, and a modified symmetry (different from the one de-
fined by Sanchez and Bergantinos [70]). A second procedure of Evans [20]
(different from the one introduced in Chapter 3) is generalized to the new
game space: Instead of being partitioned into two subcoalitions (as we dis-
cussed in the Chapter 3), the player set are partitioned into n− 1 coalitions;
that is, two players are randomly chosen to merge, with each ordered pair
having equal probability of being chosen, and then the two merged players
have equal probability of being chosen as representative. We prove the expec-
tation of this procedure is just one candidate of the position-weighted value,
when 2-person standardness is satisfied.

The ELS values are generalized to the new game space, and an axioma-
tization is given using a modified two-person standard solution and Evans’
consistency. Later we define the Core and Weber Set in the generalized game
space. It is shown that as in the classical case, the generalized Core is a subset
of the generalized Weber Set, and moreover the equality holds if the game
we considered satisfies generalized convexity.



5
VA L U E S I N T H E M U LT I P L I C AT I V E M O D E L

ABSTRACT - This chapter focuses on strictly positive games, such that
the payoffs to players are treated in a multiplicative way, instead of the usual
additive way. We introduce MEMS values as values on the multiplicative
game space satisfying multiplicative efficiency, multiplicativity, and symme-
try. This MEMS value is the generalization of the ELS value in the classical
game space. We characterize the MEMS values by a potential representation.
Another axiomatization for the MEMS value is given using multiplicative
preservation of ratios and the multiplicative efficiency. The multiplicative
Shapley value defined by Ortmann [63], is axiomatized by multiplicative
efficiency, multiplicativity, symmetry and the multiplicative dummy player
property. The Least Square value is also generalized to this game space.

5.1 introduction to the multiplicative model

In the real world, car insurance is designed to provide cover against losses
and liabilities that drivers may suffer in the event of an accident, theft or cer-
tain other events related to their vehicles. The aim of the insurance company
is to figure out the drivers’ expected claim frequency and claim amount, in
order to make a good anticipation. Both the additive and the multiplicative
model are applied to analyze such a car insurance problem. Brockman and
Wright [8] pointed out the advantages of the multiplicative model, since they
believe that simplicity can be achieved (fewer interaction terms) without a
major sacrifice in accuracy by using the multiplicative approach. The statis-
tical modeling technique and the package GLIM are used by Brockman and
Wright, in order to estimate risk for past claims data.

Different from such a probabilistic approach, Ortmann [63] studied the mo-
tor insurance pricing by a positive cooperative TU game model with finitely
many players. He characterized and analyzed a solution concept which is
related to the well known Shapley value in a multiplicative setting, provided
all players are using the same utility scale. Some elementary properties of
solutions in the additive case are transformed into new properties in the
multiplicative case, in order to characterize values in the multiplicative case.

105
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Also in our multiplicative model, we use the efficiency defined in the multi-
plicative setting introduced by Ortmann [63].

Example 5.1. [63] In most practical situations, correlations and interactions of
rating factors have to be taken into account. For instance, the scaling factor for
a young driver may be 1.5, the factor for a powerful car 1.2 and the factor for a
combination of a young driver in a powerful car maybe 2.2. Hence the risk premium
for a young driver in a powerful car would be the product of these three factors, i.e.,
3.96 times the base premium. Let player 1 denote to be young and let player 2 denote
driving a powerful car. Then we have a two-person cooperative game 〈{1, 2}, v〉 whose
characteristic function is defined by v({1}) = 1.5, v({2}) = 1.2 and v({1, 2}) = 3.96.
The value of player 1 for this game can be regarded as how much of this total increase
over the base premium is attributable to being young.

In the multiplicative model, a cooperative game is an ordered pair 〈N, v〉,
whereN is a nonempty, finite set of players, and v : 2N → R is a characteristic
function satisfying v(∅) = 1. According to Ortmann [63], this multiplicative
setting requires all players to use the same scale. Rather than measuring
absolute values, the power of a coalition is determined as a multiple of the
power of the empty set, hence we set v(∅) = 1 without loss of generality,
instead of v(∅) = 0 in the classical case. Since the evaluation of payoffs to
players is supposed to be done in a multiplicative way (through quotients)
instead of the traditional additive way (through differences), we focus on
games with strictly positive characteristic functions, i.e., v(S) > 0 for all
S ⊆ N. Let G+

N be the class of all strictly positive cooperative games 〈N, v〉,
v(∅) = 1, and G+ the universal space of strictly positive cooperative games.

We mention now some desirable properties that will be used later to char-
acterize values in the multiplicative setting. Note that the multiplicative effi-
ciency, multiplicativity respectively are the generalizations of the efficiency
and linearity in the additive case (with respect to game space G) to the mul-
tiplicative case (with respect to game space G+).

Definition 5.1. A value φ on G+
N is said to satisfy

(i) multiplicative efficiency1 if∏
i∈N

φi(N, v) = v(N) for all v ∈ G+
N. (5.1)

1 This property is called geometrical efficiency in Ortmann [63].
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(ii) multiplicativity if

φi(N, va ·wb) = (φi(N, v))a · (φi(N,w))b , (5.2)

for all v,w ∈ G+
N, all i ∈ N, and all a,b ∈ R++.

Symmetry for values on G+
N is defined as in the additive model (cf. Section

1.3.1, property (vi)).

5.2 the mems value

Recall the ELS value introduced in Section 1.3.5. We already generalized such
a concept to the generalized game space G ′ in Chapter 4. Now we aim to
generalize the ELS value to the multiplicative game space G+. In the current
setting, with any game 〈N, v〉 ∈ G+ there is associated the game 〈N, ln(v)〉
given by (ln(v))(S) = ln(v(S)) for all S ⊆ N. Note that v(∅) = 1, whereas
(ln(v))(∅) = 0. Moreover, the multiplicativity property (5.2) is equivalent to

φi(N, cln(v) · dln(w)) = cln(φi(N,v)) · dln(φi(N,w)), (5.3)

for all 〈N, v〉, 〈N,w〉 ∈ G+, all i ∈ N, and all c,d ∈ R++. This equivalence
relation can be simply derived using the fact:

aln(v) = vln(a) for all a ∈ R++, all 〈N, v〉 ∈ G+.

The equivalent multiplicativity property (5.3) is used to prove the following
result (See Theorem 2.3 for the corresponding statement for ELS values.):

Theorem 5.1. A value Φ+ : G+
N → RN satisfies multiplicative efficiency, mul-

tiplicativity, and symmetry if and only if there exists a collection of real numbers
{bns | s = 1, 2, . . . ,n} with bnn = 1 such that

Φ+
i (N, v) =

∏
S⊆N,
S3i

(v(S))p
n
s−1·b

n
s∏

S⊆N,
S 63i

(v(S))p
n
s ·bns

for all 〈N, v〉 ∈ G+ and all i ∈ N. (5.4)

Proof. With every coalition T ⊆ N, T 6= ∅, there are associated the two zero-
one games 〈N, eT 〉 and 〈N, fT 〉 respectively, with eT (T) = 1, eT (S) = 0 for all
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S 6= T , and fT (T) = e, fT (S) = 1 for all S 6= T . Obviously, the multiplicative
game representation is as follows:

v =
∏
T⊆N,
T 6=∅

(v(T))eT while eT = ln(fT ) for all T ⊆ N, T 6= ∅.

From this multiplicative decomposition, together with the multiplicativity
for Φ+ of the form (5.3), it follows

Φ+
i (N, v) = Φ+

i (N,
∏
T⊆N,
T 6=∅

(v(T))eT ) = Φ+
i (N,

∏
T⊆N,
T 6=∅

(v(T))ln(fT ))

=
∏
T⊆N,
T 6=∅

(v(T))ln(Φ+
i (N,fT )) for all 〈N, v〉 and all i ∈ N. (5.5)

Next we determine Φ+
i (N, fT ). Fix the coalition T ⊆ N, T 6= ∅. Denote its car-

dinality by t. Without going into details, because of the symmetry property
of the value Φ+, players within and outside T respectively are said to form
two symmetrical groups such that Φ+

i (N, fT ) =: at for all i ∈ T as well as
Φ+
i (N, fT ) =: bt for all i ∈ N\T . Due to the multiplicative efficiency of the

value Φ+ applied to the game 〈N, fT 〉, it holds that (at)t · (bt)n−t = fT (N).
In case T = N, all the players are symmetrical in the game 〈N, fN〉 and thus,
Φ+
i (N, fN) = exp(1/n) for all i ∈ N. For any T 6= N, the multiplicative ef-

ficiency constraint reduces to (at)
t · (bt)n−t = fT (N) = 1 or equivalently,

t · ln(at) + (n− t) · ln(bt) = ln(1) = 0 and hence, ln(bt) = −t · ln(at)/(n− t).
Substituting the new data into the fundamental relation (5.5), yields the fol-
lowing:

Φ+
i (N, v) = (v(N))

1
n ·
∏
T$N,
T3i

(v(T))ln(Φ+
i (N,fT )) ·

∏
T⊆N\{i},
T 6=∅

(v(T))ln(Φ+
i (N,fT ))

=(v(N))
1
n ·
∏
T$N,
T3i

(v(T))ln(at) ·
∏

T⊆N\{i},
T 6=∅

(v(T))ln(bt)

=(v(N))
1
n ·
∏
T$N,
T3i

(v(T))ln(at) ·
∏

T⊆N\{i},
T 6=∅

(v(T))
−t
n−t ·ln(at).

The latter expression is of the form (5.4) whenever pns−1 · b
n
s = ln(as) for all

1 6 s 6 n− 1. It is left to the reader to verify that any value of the form
(5.4) satisfies the multiplicativity property (5.2) as well as the multiplicative
efficiency.
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We call the class of values satisfying multiplicative efficiency, multiplica-
tivity and symmetry the MEMS value, which is the generalization of the ELS
value of the form (1.13). Note that, the so-called multiplicative Shapley value
Sh+ [63] arises by choosing bns = 1 for all 1 6 s 6 n. Then (5.4) can be
rewritten as

Sh+i (N, v) =
∏

S⊆N\{i}

(
v(S∪ {i})
v(S)

)pns
for all 〈N, v〉 ∈ G+ and all i ∈ N.

(5.6)
The multiplicative Shapley value Sh+ is the counterpart of the well-known
(additive) Shapley value (cf. Section 1.3.2). Their mutual interrelationship is
given by

Sh+i (N, v) = exp(Shi(N, ln(v)) for all 〈N, v〉 ∈ G+ and all i ∈ N.

Recall the interpretation of the ELS value in the classical game space G due
to Nembua [56]. In Section 4.2 we have extended his concept to the general-
ized game space G ′, in which the orders of players entering into the game
influences the worth of that coalition. Now we extend Nembua’s interpreta-
tion of the ELS value to the new game space G+:

Theorem 5.2. A value φ on G+
N verifies the multiplicative efficiency, multiplica-

tivity and symmetry if and only if there exists a (unique) collection of constants
θ(s)ns=1 with θ(1) = 1 such that for any i ∈ N,

φi(N, v) =
∏
S⊆N,
S3i

(
A
θ(s)
i (S)

)pns−1 . (5.7)

Here Aθ(s)i (S) = v({i}) if s = 1, otherwise if s > 1

A
θ(s)
i (S) =

(
v(S)

v(S \ {i})

)θ(s)
·

 ∏
j∈S\{i}

v(S)

v(S \ {j})


1−θ(s)
s−1

.

Proof. Substituting the formula for Aθ(s)i into (5.7), and letting θ(s + 1) =

bnn−s for all 0 6 s 6 n− 1, then it is easy to find that (5.7) coincides with
(5.3).
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5.2.1 Potential characterization of the MEMS value

Hart and Mas-Colell [31] characterized the Shapley value by means of a
potential in the classical game space. An analogous characterization for the
ELS value has been found in Section 2.1. We also gave a generalization of
the potential concept for the ELS value in the generalized game space G ′

in Section 4.2. Here we aim to give the potential characterization for the
MEMS value in the multiplicative setting. Now, consider three sequences
α = (αk)k∈N, β = (βk)k∈N, γ = (γk)k∈N of real numbers satisfying α1 = 1

and αk 6= 0 for all k > 2, and a function Q+ : G+ → R on the universal game
space G+ satisfying Q+(∅, v) = 1.

Definition 5.2. A function Q+ : G+ → R on the universal game space G+ satisfy-
ingQ+(∅, v) = 1 is called a generalized multiplicative potential function (associated
with any three sequences α, β, γ of real numbers), if its generalized multiplicative
gradient satisfies the multiplicative efficiency constraint:∏

i∈N
(DiQ

+)(N, v) = v(N) for all 〈N, v〉 ∈ G+. (5.8)

The i-th component (DiQ+) : G+ → R of the generalized multiplicative gradient
DQ+ = (DiQ

+)i∈N, is given by:

(DiQ
+)(N, v) =

(
Q+(N, v)

)αn · (Q+(N\{i}, v)
)−βn ·∏

j∈N

(
Q+(N\{j}, v)

)−γn
n ,

(5.9)
for all 〈N, v〉 ∈ G+, i ∈ N.

By a similar discussion as in Section 1.3.5, we tacitly assume βn 6= 0.
We say that a value φ on G+ has a generalized multiplicative potential
representation, if there exist three sequences α = (αk)k∈N, β = (βk)k∈N,
γ = (γk)k∈N of real numbers satisfying α1 = 1 and αk 6= 0 for all k > 2, as
well as a generalized multiplicative potential function Q+ : G+ → R as in
Definition 5.2 such that φi(N, v) = (DiQ

+)(N, v) for all 〈N, v〉 ∈ G+ and all
i ∈ N.

Lemma 5.1. Let Q+(N, v) be a generalized multiplicative potential function (as in
Definition 5.2), then Q+ : G+ → R satisfies the recursive formula(
Q+(N, v)

)n·αn = v(N) ·
∏
j∈N

(Q(N\{j}, v))βn+γn for all 〈N, v〉 ∈ G+, n > 2.

(5.10)
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This recursive relationship for the potential function Q+ : G+ → R is solved by

Q+(N, v) =
∏
S⊆N

(v(S))p
n
s−1·q

n
s for all 〈N, v〉 ∈ G+, (5.11)

where p and q are sequences defined by (2.6) and (2.7) separately.

Theorem 5.3. If a value φ on G+
N has a generalized multiplicative potential rep-

resentation of the form (5.9), then the underlying value φ on G+
N is determined as

follows:

φi(N, v) = (v(N))
1
n ·


∏

S$N,
i∈S

(v(S))p
n
s−1·q

n−1
s∏

S⊆N,
i 6∈S

(v(S))p
n
s ·qn−1s


βn

, (5.12)

for all 〈N, v〉 ∈ G+ and all i ∈ N.

The proof of this theorem is similar to the one of Theorem 2.2. More-
over without changing the proof, it is easy to see that Theorem 2.4 holds
in the multiplicative game space G+

N, if we replace the modified potential
representation of the form (2.3) by the form (5.9). In this setting, we can ob-
tain the multiplicative Shapley value of the form (5.6), if we choose bns = 1,
βs+1 = αs, γs+1 = 0, qns = 1/αn, and so, any multiplicative potential repre-
sentation of Sh+(N, v) is of the form

Sh+i (N, v) =
(
Q+(N, v)

)αn · (Q+(N\{i}, v)
)−αn−1 ,

and

Q+(N, v) =
∏
S⊆N

(v(S))
pn
s−1
αn .

The simplest choice αn = 1 for all n > 1 yields the multiplicative counterpart
of Hart and Mas-Colell’s potential representation of the additive Shapley
value given by Shi(N, v) = P(N, v) − P(N\{i}, v) together with the potential
function P(N, v) =

∑
S⊆N p

n
s−1 · v(S).

5.2.2 Multiplicative preservation of generalized ratios

Myerson [52] introduced the balanced contribution property (also called fair
allocation rule) in the additive model as follows: for any game 〈N, v〉 ∈ G,
and any player i, j ∈ N, i 6= j, the difference between the value of player i
in the original game and that in the reduced (n− 1)-person game, excluding
player j, is equivalent to the difference between the value of player j in the
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original game and that in the reduced (n− 1)-person game, excluding player
i. More precisely,

Definition 5.3. Value φ on G satisfies the balanced contribution property, if

φi(N, v) −φi(N \ {j}, v) = φj(N, v) −φj(N \ {i}, v),

for all 〈N, v〉 ∈ G, i, j ∈ N, i 6= j.

This property together with the additive efficiency, are used to characterize
the additive Shapley value. Hart and Mas-Colell [31] pointed out that it is
preferable to preserve ratios rather than differences, if the players use the
same utility scale. Ortmann [63] then generalized the balanced contribution
property to the multiplicative case under the new name, preservation of ratio.
We will generalize the concept of preservation of ratios, such that, together
with multiplicative efficiency, it can be applied to characterize the MEMS
value. The potential representation of the MEMS value we derived in last
section is used in order to study this property.

Lemma 5.2. Any value φ on G+ which has a generalized multiplicative poten-
tial representation of the form (5.9) with respect to three sequences α = (αk)k∈N,
β = (βk)k∈N, and γ = (γk)k∈N of real numbers, satisfies the following general-
ized multiplicative balanced contributions property (also known as preservation of
generalized ratios): for all 〈N, v〉 ∈ G+ and every pair {i, j}, i 6= j, of players

φi(N, v) · (φi(N\{j}, v))−rn ·
∏

k∈N\{i,j}

(φi(N\{k}, v))−tn

= φj(N, v) ·
(
φj(N\{i}, v)

)−rn · ∏
k∈N\{i,j}

(
φj(N\{k}, v)

)−tn , (5.13)

where

rn =
βn

αn−1
and tn =

βn

βn−1
· γn−1
(n− 1) ·αn−1

. (5.14)

Proof. Fix the game 〈N, v〉 on G+, as well as the pair {i, j} of players in N.
Because of the potential representation of the form (5.9) applied to both
φ(N, v) and φ(N\{k}, v), k ∈ N, the following holds,

φi(N, v)
φj(N, v)

=

(
Q+(N\{j}, v)
Q+(N\{i}, v)

)βn
as well as

φi(N\{k}, v)
φj(N\{k}, v)

=

(
Q+(N\{j, k}, v)
Q+(N\{i,k}, v)

)βn−1
for all k ∈ N\{i, j}.
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Further, we obtain,

φi(N\{j}, v) =
(
Q+(N\{j}, v)

)αn−1 · (Q+(N\{i, j}, v)
)−βn−1

·
∏

k∈N\{j}

(
Q+(N\{j,k}, v)

)−γn−1
n−1 ,

as well as

φj(N\{i}, v) =
(
Q+(N\{i}, v)

)αn−1 · (Q+(N\{i, j}, v)
)−βn−1

·
∏

k∈N\{i}

(
Q+(N\{i,k}, v)

)−γn−1
n−1 ,

and so,

φj(N\{i}, v)
φi(N\{j}, v)

=

(
Q+(N\{i}, v)
Q+(N\{j}, v)

)αn−1
·
∏

k∈N\{i,j}

(
Q+(N\{j,k}, v)
Q+(N\{i,k}, v)

)γn−1
n−1

.

We conclude

φi(N, v)
φj(N, v)

·
(
φj(N\{i}, v)
φi(N\{j}, v)

)rn
·
∏

k∈N\{i,j}

(
φj(N\{k}, v)
φi(N\{k}, v)

)tn

=

(
Q+(N\{j}, v)
Q+(N\{i}, v)

)βn
·
∏

k∈N\{i,j}

(
Q+(N\{i,k}, v)
Q+(N\{j,k}, v)

)tn·βn−1

·
(
Q+(N\{i}, v)
Q+(N\{j}, v)

)rn·αn−1
·
∏

k∈N\{i,j}

(
Q+(N\{j,k}, v)
Q+(N\{i,k}, v)

)rn·γn−1n−1

=

(
Q+(N\{j}, v)
Q+(N\{i}, v)

)βn−rn·αn−1
·
∏

k∈N\{i,j}

(
Q+(N\{i,k}, v)
Q+(N\{j,k}, v)

)tn·βn−1−rn·γn−1n−1

= 1,

if rn ·αn−1 = βn and tn ·βn−1 = rn · γn−1/(n− 1).

Theorem 5.4. The value φ on G+ which has a generalized multiplicative potential
representation of the form (5.9) with respect to three sequences α = (αk)k∈N, β =

(βk)k∈N, and γ = (γk)k∈N of real numbers, is the unique value that satisfies the
multiplicative efficiency and the preservation of generalized ratios of the form (5.13).

Proof. Suppose two values φ and ψ on G+ both satisfy multiplicative effi-
ciency and preservation of generalized ratios. We prove by induction on the
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number of players that ψ(N, v) = φ(N, v) for all 〈N, v〉. The induction steps
start with the 1-person game, which is trivial due to efficiency. Let 〈N, v〉 be
any n-person game, n > 2, and consider any pair {i, j} of players. By the in-
duction hypothesis, suppose both values coincide for (n− 1)-person games.
By the preservation of generalized ratios for both values, it follows

ψj(N, v)
ψi(N, v)

=

(
ψj(N\{i}, v)

)rn ·∏k∈N\{i,j}
(
ψj(N\{k}, v)

)tn
(ψi(N\{j}, v))rn ·

∏
k∈N\{i,j} (ψi(N\{k}, v))tn

=

(
φj(N\{i}, v)

)rn ·∏k∈N\{i,j}
(
φj(N\{k}, v)

)tn
(φi(N\{j}, v))rn ·

∏
k∈N\{i,j} (φi(N\{k}, v))tn

=
φj(N, v)
φi(N, v)

.

Write xk = ψk(N, v) and yk = φk(N, v) for all k ∈ N. In summary, by
preservation of generalized ratios, it holds xj/xi = yj/yi for any pair {i, j}.
Fix i ∈ N. Multiplying over all pairs {i, j}, j 6= i, yields∏

j∈N xj

(xi)n
=

∏
j∈N yj

(yi)n
.

Note that ∏
j∈N

xj = v(N) =
∏
j∈N

yj,

due to the multiplicative efficiency of both values φ and ψ. Hence xi = yi.
That is, ψi(N, v) = φi(N, v) for all i ∈ N.

Theorem 5.5. Let sequences α = (αk)k∈N,β = (βk)k∈N,γ = (γk)k∈N with
α1 = 1 and αk 6= 0 for all k > 2 be given. A value φ on G+ satisfies preservation of
generalized ratios of the form (5.13) with respect to the two sequences r = (rk)k∈N,
t = (tk)k∈N, of real numbers given by (5.14), if and only if the value φ admits a
generalized multiplicative potential representation of the form (5.9).

Proof. The implication “⇐=” is already treated in Lemma 5.2. Here we prove
the remaining implication “=⇒”. For that purpose, suppose that the value
φ on G+ satisfies preservation of generalized ratios of the form (5.13) and
define the function Q+ : G+ → R by

Q+(N, v) = (φi(N, v))
1
αn ·

(
Q+(N\{i}, v)

)βn
αn ·

∏
k∈N

(
Q+(N\{k}, v)

) γn
n·αn .

(5.15)
Then Q+ is a generalized multiplicative potential representation of the value
φ of the form (5.13) (cf. (5.9) after solving with respect to φi(N, v)) provided
Q+ is well-defined. We prove by induction on the number of players that
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Q+ is well-defined. The induction basis for 1-person game is correct due to
Q+(∅, v) = 1 as well as α1 = 1. Let 〈N, v〉 be any n-person game with n > 2.
By the induction hypothesis, Q+ is well-defined for (n− 1)-person games.
That is, it holds for all pairs {i, j}, i 6= j, of players

φi(N\{j}, v) =
(
Q+(N\{j}, v)

)αn−1 · (Q+(N\{i, j}, v)
)−βn−1

·
∏

k∈N\{j}

(
Q+(N\{j,k}, v)

)−γn−1
n−1 .

(5.16)

By the preservation of generalized ratios of the value φ, it holds for all
pairs {i, j}, i 6= j,

φi(N, v)
φj(N, v)

=
(φi(N\{j}, v))rn ·

∏
k∈N\{i,j} (φi(N\{k}, v))tn(

φj(N\{i}, v)
)rn ·∏k∈N\{i,j}

(
φj(N\{k}, v)

)tn . (5.17)

Our purpose is to show that the definition of Q+ in (5.15) does not depend
on the choice of any player, i.e., for every pair {i, j}, i 6= j, we must have:

φi(N, v) ·
(
Q+(N\{i}, v)

)βn = φj(N, v) ·
(
Q+(N\{j}, v)

)βn ,

or equivalently,
φi(N, v)
φj(N, v)

=

(
Q+(N\{j}, v)
Q+(N\{i}, v)

)βn
. (5.18)

Fix the pair {i, j}, i 6= j. On one hand, from (5.16) applied twice, together with
(5.14), we derive(

φi(N\{j}, v)
φj(N\{i}, v)

)rn

=

(
Q+(N\{j}, v)
Q+(N\{i}, v)

)rn·αn−1
·

(∏
k∈N\{j}Q

+(N\{j,k}, v)∏
k∈N\{i}Q

+(N\{i,k}, v)

)−rn·γn−1
n−1

=

(
Q+(N\{j}, v)
Q+(N\{i}, v)

)βn
·

( ∏
k∈N\{i,j}Q(N\{j,k}, v)∏
k∈N\{i,j}Q

+(N\{i,k}, v)

)−tn·βn−1

.

On the other hand, from (5.16) applied twice, we derive

∏
k∈N\{i,j}

(
φi(N\{k}, v)
ψj(N\{k}, v)

)tn
=

∏
k∈N\{i,j}

(
Q+(N\{i,k}, v)
Q+(N\{j,k}, v)

)−βn−1·tn
.
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From the latter two equalities, together with (5.17), we conclude that (5.18)
holds. Hence, Q+ is well-defined.

5.2.3 Comparison with the additive model

Similar to the potential characterization for the ELS value on G derived in
Section 2.1, we have the following result for the MEMS values:

Theorem 5.6. A value Φ+ on G+
N has a generalized multiplicative potential rep-

resentation of the form (5.9) with generalized multiplicative potential function
Q+ : G+ → R if and only if the corresponding value ln(Φ+) has a generalized
additive potential representation of the form (2.3) with additive potential function
Q = ln(Q+) : G→ R.

Here the value ln(Φ+) is defined by (ln(Φ+))i(N, v) = ln(Φ+
i (N, v)) for all

〈N, v〉 ∈ G, all i ∈ N, and the additive potential function ln(Q+) is defined by
(ln(Q+))(N, v) = ln(Q+(N, v)) for all 〈N, v〉 ∈ G.

Proof. The following equivalences hold true: for all 〈N, v〉 ∈ G+ and all i ∈ N,

Φ+
i (N, v) =

(
Q+(N, v)

)αn · (Q+(N\{i}, v)
)−βn ·

∏
j∈N

Q+(N\{j}, v)


−γn
n

,

if and only if

ln(Φ+
i (N, v)) = ln

(Q+(N, v)
)αn · (Q+(N\{i}, v)

)−βn ·
∏
j∈N

Q+(N\{j}, v)


−γn
n

 ,

if and only if

(ln(Φ+))i(N, v) = αn · ln(Q+(N, v)) −βn · ln
(
Q+(N\{i}, v)

)
−
γn

n
· ln

∏
j∈N

Q+(N\{j}, v)

 ,

if and only if

(ln(Φ+))i(N, v) = αn · (ln(Q+))(N, v) −βn · (ln(Q+))(N\{i}, v)

−
γn

n
·
∑
j∈N

(
(ln(Q+))(N\{j}, v)

)
.



5.2 the mems value 117

Comparing the ELS value of the form (1.13) in the classical game space G,
with the MEMS value of the form (5.4) in the multiplicative game space G+,
we have the following result:

Theorem 5.7. The following transformation defines a one-to-one correspondence
between the ELS value Φ of the form (1.13) and the MEMS value Φ+ of the form
(5.4):

Φ+
i (N, v) = exp(Φi(N, ln(v))) or equivalently, ln

(
Φ+
i (N, v)

)
= Φi(N, ln(v)).

Proof. Let 〈N, v〉 ∈ G+ and i ∈ N. Starting from (5.4) in terms of the ln
function, we obtain by straightforward computations the following:

ln
(
Φ+
i (N, v)

)
= ln

∏S⊆N,
i∈S

(v(S))p
n
s−1·b

n
s∏

S⊆N,
i 6∈S

(v(S))p
n
s ·bns



= ln

∏
S⊆N,
i∈S

(v(S))p
n
s−1·b

n
s

− ln

∏
S⊆N,
i 6∈S

(v(S))p
n
s ·bns


=

∑
S⊆N,
i∈S

ln
(
(v(S))p

n
s−1·b

n
s

)
−
∑
S⊆N,
i 6∈S

ln
(
(v(S))p

n
s ·bns

)

=
∑
S⊆N,
i∈S

(pns−1 · b
n
s ) · ln(v(S)) −

∑
S⊆N,
i 6∈S

(pns · bns ) · ln(v(S))

= Φi(N, ln(v)) due to (1.13).

As a counterpart to the well-known additive Shapley value, Nowak and
Radzik [59] introduced the Solidarity value (of the form (1.14)) by replacing
the marginal contribution of a single player by the average of marginal con-
tributions of members of any coalition. Now we introduce the multiplicative
Solidarity value as follows:

Sol+i (N, v) =
∏
T⊆N,
i∈T

∏
k∈T

(
v(T)

v(T\{k})

)pnt−1
t

for all 〈N, v〉 ∈ G+, all i ∈ N.

(5.19)



118 values in the multiplicative model

In the setting of the MEMS values, the multiplicative Solidarity value is ob-
tained by bnn = 1 and bns = 1/(s + 1) for all 1 6 s 6 n − 1. So we have
βn = αn−1/n and γn = αn−1. By Lemma 5.2, it holds rn = tn = 1/n,
and so by Theorem 5.1, this value is fully characterized by multiplicative ef-
ficiency and preservation of generalized ratios of the following form: for all
〈N, v〉 ∈ G+ and every pair i, j ∈ N, i 6= j,(

φi(N, v)
φj(N, v)

)n
=

∏
k∈N\{i}φi(N\{k}, v)∏
k∈N\{j}φj(N\{k}, v)

.

In words, the rather appealing preservation of generalized ratios for the Sol-
idarity value requires that the n-th power of the ratio of the player’s payoffs
according to the Solidarity value in the initial n-person game equals the ratio
of the product of player’s payoffs in all (n− 1)-person subgames. Recall the
preservation of ratios for the multiplicative Shapley value which ignores the
n-th power as well as takes into account only the (n− 1)-person subgame by
deleting the pairwise partner (that is, rn = 1 and tn = 0).

For the ELS values we obtain a similar result: The ELS value Φ on GN

satisfies an analogous balanced contribution property, we call it the additive
preservation of generalized differences.

Corollary 5.1. Any value Φ on G which has a generalized additive potential
representation of the form (2.3) with respect to three sequences α = (αk)k∈N,
β = (βk)k∈N, and γ = (γk)k∈N of real numbers, satisfies the following gener-
alized additive balanced contributions property (also known as preservation of gen-
eralized differences): for all 〈N, v〉 ∈ G and every pair {i, j}, i 6= j, of players

Φi(N, v) − rn ·Φi(N\{j}, v) − tn ·
∑

k∈N\{i,j}

Φi(N\{k}, v)

= Φj(N, v) − rn ·Φj(N\{i}, v) − tn ·
∑

k∈N\{i,j}

Φj(N\{k}, v),

where rn and tn are defined by (5.14).

5.3 the shapley value in the multiplicative model

Remind the multiplicative Shapley value of the form (5.6) introduced by Ort-
mann [63]. We now give in the following a complementary characterization
by using the dummy player property in the multiplicative model.
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Definition 5.4. A value φ on G+ satisfies the multiplicative dummy player prop-
erty, if φi(v) = v({i}) for any multiplicative dummy player i ∈ N. Here player i is
called a multiplicative dummy player if v(S∪ {i}) = v(S) · v({i}) for any S ⊆ N \ {i}.

Based on the unanimity game of the form (1.8) in the classical game space,
we define the following basis: A basis of the game space G+

N is supplied by
a collection of games {(N,u+T ) | T ∈ 2

N \ {∅}}, that are defined by

u+T (S) =

e if T ⊆ S,

1 if T 6⊆ S.
(5.20)

Theorem 5.8. For any v ∈ G+
N, it holds

v =
∏
T

(
c+T
)lnu+

T with c+T =
∏
R⊆T

v(R)(−1)
t−r

.

Proof. It is sufficient to show ln v =
∑
T ln c+T · lnu

+
T . Clearly ln c+T =∑

R⊆T (−1)
t−r ln v(R) and

lnu+T =

1 if T ⊆ S,

0 if T 6⊆ S.

For any S ⊆ N,∑
T⊆N

ln c+T · lnu
+
T (S) =

∑
T⊆S

ln c+T =
∑
T⊆S

∑
R⊆T

(−1)t−r ln v(R)

=
∑
R⊆S

∑
T⊆S,
T⊇R

(−1)t−r ln v(R)

=
∑
R⊆S

s∑
t=r

(
s− t

t− r

)
(−1)t−r ln v(R)

=
∑
R⊆S

(1− 1)s−r ln v(R) = ln v(S).

With the help of the basis of the multiplicative game space G+ we can
proof the following result:
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Theorem 5.9. The multiplicative Shapley value of the form (5.6) on G+ is the
unique value satisfying multiplicative efficiency, multiplicativity, symmetry and the
multiplicative dummy player property (cf. Definition 5.4).

Proof. Clearly the multiplicative Shapley value satisfies these four properties.
Here we prove the uniqueness. Suppose value φ also satisfies these four
properties. Fix T ⊆ N. Since for any player i 6∈ T , u+T (S∪ {i}) = u

+
T (S) ·u

+
T ({i})

holds for all S ⊆ N \ {i}, i is a multiplicative dummy player in 〈N,u+T 〉. By
the multiplicative dummy player property,

φi(N,u+T ) = 1 for all i 6∈ T .

By the efficiency, e = u+T (N) =
∏
i∈Nφi(N,u+T ) =

∏
i∈T φi(N,u+T ). Since

for any i, j ∈ T , u+T (S ∪ {i}) = u+T (S ∪ {j}) holds for all S ⊆ N \ {i, j}, then all
players in T are symmetric players. By symmetry

φi(N,u+T ) = e
1
t for all i ∈ T .

Based on the multiplicativity, for any i ∈ N,

φi(N, v) = φi

(
N,
∏
T

(
c+T
)lnu+

T

)
=
∏
T

(
c+T
)lnφi(N,u+

T ) =
∏
T⊆N,
T3i

(
c+T
) 1
t .

Hence

φi(N, v) =
∏
T⊆N,
T3i

(
c+T
) 1
t =

∏
T⊆N,
T3i

∏
R⊆T

v(R)(−1)
t−r· 1t

=
∏
R⊆N,
R3i

∏
T⊆N,
T⊇R

v(R)(−1)
t−r· 1t ·

∏
R⊆N,
R3i

∏
T⊆N,
T⊇R

v(R \ {i})(−1)
t−r+1· 1t

=
∏
R⊆N,
R3i

∏
T⊆N,
T⊇R

(
v(R)

v(R \ {i})

)(−1)t−r· 1t

=
∏
R⊆N,
R3i

(
v(R)

v(R \ {i})

)∑n
t=r (

n−r
t−r)·(−1)

t−r· 1t

=
∏
R⊆N,
R3i

(
v(R)

v(R \ {i})

)pnr−1
= Sh+i (N, v).
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The second last equality above uses the combinatorial result:

n∑
t=r

(
n− r

t− r

)
· 1
t
· (−1)t−r = (r− 1)!(n− r)!

n!
= pnr−1 for all 1 6 r 6 n.

(5.21)
Clearly (5.21) holds when n = 1. Suppose (5.21) holds for n 6 k− 1 with
k > 2, and consider the case n = k:

k∑
t=r

(
k− r

t− r

)
· 1
t
· (−1)t−r =

k−1∑
t=r

(
k− r

t− r

)
· 1
t
· (−1)t−r + (−1)k−r · 1

k

=

k−1∑
t=r

(
k− r− 1

t− r

)
· 1
t
· (−1)t−r + (−1)k−r · 1

k

+

k−1∑
t=r

[(
k− r

t− r

)
−

(
k− r− 1

t− r

)]
· 1
t
· (−1)t−r.

By the induction hypothesis, the equality above is equivalent to

pk−1r−1 + (−1)k−r · 1
k
+

k−1∑
t=r

[(
k− r

t− r

)
−

(
k− r− 1

t− r

)]
· 1
t
· (−1)t−r

=pk−1r−1 + (−1)k−r · 1
k
+

k−1∑
t=r+1

(
k− r− 1

t− r− 1

)
· 1
t
· (−1)t−r

=pk−1r−1 + (−1)k−r · 1
k
−

k∑
t=r+1

(
k− (r+ 1)

t− (r+ 1)

)
· 1
t
· (−1)t−(r+1) + (−1)k−(r+1) · 1

k
.

Using again the induction hypothesis, we can rewrite the equation above as

pk−1r−1 + (−1)k−r · 1
k
− pkr + (−1)k−r−1 · 1

k
= pkr−1.

Hence
k∑
t=r

(
k− r

t− r

)
· 1
t
· (−1)t−r = pkr−1.

This completes the proof of (5.21).

Recalling the multiplicative Shapley value of the form (5.6), we can derive
the following relation:
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Theorem 5.10. For any game v ∈ G+, the multiplicative Shapley value satisfies the
recursive formula

Sh+i (N, v) =

 v(N)

v(N \ {i})
·
∏

j∈N\{i}

Sh+i (N \ {j}, v)

 1n

Proof. According to (5.6),

∏
j∈N\{i}

Sh+i (N \ {j}, v) =
∏

j∈N\{i}

∏
S⊆N\{j},
S3i

(
v(S)

v(S \ {i})

)pn−1s−1

=
∏
S$N
S3i

∏
j∈N\S

(
v(S)

v(S \ {i})

)pn−1s−1

=
∏
S$N
S3i

(
v(S)

v(S \ {i})

)(n−s)·pn−1s−1

.

Hence v(N)

v(N \ {i})
·
∏

j∈N\{i}

Sh+i (N \ {j}, v)

 1n =
∏
S⊆N,
S3i

(
v(S)

v(S \ {i})

)pns−1
= Sh+i (N, v).

For any game 〈N, v〉 on the classical game space G, remind its dual game
〈N, v∗〉 is defined by

v∗(S) = v(N) − v(N \ S) for all S ⊆ N.

We generalize this concept into the multiplicative game space G+: For any
game 〈N, v〉 on G+, its multiplicative dual game 〈N, v∗〉 is defined by

v∗(S) =
v(N)

v(N \ S)
for all S ⊆ N.

This definition leads to the following relation:

Theorem 5.11. For any game v and its multiplicative dual game v∗ on G+, it holds
Sh+i (N, v) = Sh+i (N, v∗) for any i ∈ N.
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Proof. According to (5.6), for any i ∈ N

Sh+i (N, v∗) =
∏
S⊆N,
S3i

(
v∗(S)

v∗(S \ {i})

)pns−1
=
∏
S⊆N,
S3i

(
v((N \ S)∪ {i})
v(N \ S)

)pns−1
.

Let T = (N \ S)∪ {i}, then

Sh+i (N, v∗) =
∏
T⊆N,
T3i

(
v(T)

v(T \ {i})

)pnt−1
= Sh+i (N, v).

5.4 the least square value in the multiplicative model

Remind the Least Square value in the classical game space (see Section 1.3.4).
In this section we generalize this concept to the multiplicative game space
G+. For any payoff vector x and any nonempty coalition S, the multiplicative
excess of S on x is defined by

e+(S, x) =
v(S)

x(S)
,

where x(S) =
∏
i∈S xi. The average multiplicative excess at x is given by

ē+(v, x) =

∏
S⊆N

e+(S, x)

1/(2n−1) .

Note that, the average excess is the same for any multiplicative efficient pay-
off vector, since

∏
S⊆N

e+(S, x) =
∏
S⊆N

v(S)

x(S)
=

∏
S⊆N v(S)∏

S⊆N
∏
i∈S xi

=

∏
S⊆N v(S)(∏

i∈N xi
)∑n

s=1C
s−1
n−1

=

∏
S⊆N v(S)

(v(N))
∑n
s=1C

s−1
n−1

.

Consider a weight function m(s) with m(s) > 0 for any S ⊆ N and m(s) >

0 for some S 6= N. We restrict m(s) to be symmetric, hence it can be regarded
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as the probability that a coalition with s players can form. For each weight
function m we consider the following problem:

min

ln

∏
S⊆N

(
e+(S, x)
ē+(v, x)

)m(s)
2,

s.t.
∏
i∈N

xi = v(N).

(5.22)

Note that ln x is just the least square value in the classical case for game
(N, ln v). Next we will derive the solution for the above problem mathemati-
cally.

Theorem 5.12. For any weight function m and any game v on G+, there exists a
unique solution x for (5.22) and it is given by,

xi = (v(N))
1
n ·
∏
S$N
S3i

(v(S))
m(s)
σ ·

n−s
n ·
∏
S⊆N
S 63i

(v(S))−
m(s)
σ ·

s
n , (5.23)

for all i ∈ N, where σ =
∑n−1
s=1 m(s)Cs−1n−2.

Proof. The Lagrangian of (5.22) is

L(x, λ) =

ln

∏
S⊆N

(
e+(S, x)
ē+(v, x)

)m(s)
2 + λ · (∏

i∈N
xi − v(N)).

Then for any i ∈ N it holds

0 =
∂L(x, λ)
∂xi

= −2
∑
S⊆N
S3i

m(s)

ln (v(S)) −
∑
j∈S

ln
(
xj
)
− ln

(
ē+(v, x)

) · 1
xi

+ λ
∏

j∈N\{i}

xj.

(5.24)
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Let xi 6= 0 for all i ∈ N. Using the constraint in (5.22) we can write (5.24) as
follows: for all i ∈ N,

v(N) · λ
2
=
∑
S⊆N
S3i

m(s)

ln (v(S)) − ln
(
ē+(v, x)

)
−
∑
j∈S

ln
(
xj
)

=
∑
S⊆N
S3i

m(s) ln (v(S)) −
∑
S⊆N
S3i

m(s) ln
(
ē+(v, x)

)

−

n∑
s=1

m(s)Cs−1n−1 · ln (xi) −

n∑
s=2

m(s)Cs−2n−2 ·
∑

j∈N\{i}

ln
(
xj
)
.

(5.25)

Since the constraint in (5.22) is equivalent to∑
j∈N\{i}

ln
(
xj
)
= ln (v(N)) − ln (xi) for all i ∈ N, (5.26)

then (5.25) can be rewritten as:

v(N) · λ
2
=−

∑
S⊆N
S3i

m(s) ln
(
ē+(v, x)

)
−

n∑
s=2

Cs−2n−2m(s) ln (v(N))

+
∑
S⊆N
S3i

m(s) ln (v(S)) −

[
n∑
s=1

Cs−1n−1m(s) −

n∑
s=2

Cs−2n−2m(s)

]
· ln (xi) .

(5.27)

We use the identity

n∑
s=1

m(s)Cs−1n−1 −

n∑
s=2

m(s)Cs−2n−2 =

n−1∑
s=1

m(s)Cs−1n−2 = σ.

Taking the summation over all i ∈ N in (5.27), we have

∑
i∈N

v(N) · λ
2
=v(N) · nλ

2

=−n
∑
S⊆N
S3i

m(s) ln
(
ē+(v, x)

)
−n

n∑
s=2

Cs−2n−2m(s) ln (v(N))

+
∑
i∈N

∑
S⊆N
S3i

m(s) ln (v(S)) − σ ·
∑
i∈N

ln (xi) .

(5.28)
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Using again (5.26), we can simplify (5.28) as follows:

v(N) · λ
2
=−

∑
S⊆N
S3i

m(s) ln
(
ē+(v, x)

)
−

n∑
s=2

Cs−2n−2m(s) ln (v(N))

+
∑
S⊆N

s ·m(s)

n
ln (v(S)) −

σ

n
· ln (v(N)) .

(5.29)

To eliminate λ, we take the difference of (5.27) and (5.29), then

σ · ln (xi) =
∑
S⊆N,
S3i

m(s) ln (v(S)) −
∑
S⊆N

s ·m(s)

n
ln (v(S)) +

σ

n
ln (v(N))

=
σ

n
ln (v(N)) +

1

n

∑
S$N
S3i

(n− s) ·m(s) ln (v(S)) −
1

n

∑
S⊆N
S 63i

s ·m(s) ln (v(S)),

which is equivalent to (5.23).

In the multiplicative model, instead of the additive game (see Definition
1.5), we consider a so-called multipliable game. A game 〈N, v〉 on G+ is a
multipliable game if

v(S) =
∏
i∈S

v({i}) for all S ⊆ N.

A value φ on G+ is said to satisfy the multipliable game property if φi(N, v) =
v({i}) for all i ∈ N, and for all multipliable games 〈N, v〉.

Theorem 5.13. The Least Square value of the form (5.23) is the unique value on
G+
N satisfying multiplicative efficiency, multiplicativity, multiplicative symmetry,

multipliable game property and the coalitional monotonicity (see subsection 1.3.1).

Proof. Clearly the value of the form (5.23) satisfies these properties. Suppose
there is another value ψ on G+

N also satisfying these properties, then it be-
longs to the class of MEMS values, which has the form (5.4) for some bns ,
1 6 s 6 n− 1.

Remind the zero-one game u+T (cf. (5.20)). Fix i ∈ N and let T = {i}, then
by (5.4), for multipliable game u+

{i}
it holds

e = u+
{i}

({i}) = ψi(N,u+
{i}

) =
∏

S⊆N\{i}

exp

{
n−1∑
s=0

Csn−1 · b
n
s+1 · p

n
s

}
,
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hence

1 =

n−1∑
s=0

Csn−1 · b
n
s+1 · p

n
s =

n∑
s=1

Cs−1n−1 · b
n
s · pns−1,

then after cancellation we have

n∑
s=1

bns = 1. (5.30)

Now notice that formula (5.23) matches with (5.4) if we define the
weighted function m as follows:

m(s) = pn−1s−1 · b
n
s for all 1 6 s 6 n,

and if for this weighted function it holds σ = 1. From coalitional monotonic-
ity, it easily follows that it must be bns > 0, so that m(s) > 0 for all S ⊆ N,
and by (5.30), m(s) > 0 for some S 6= N. The only thing left to check is σ = 1.
Note that bnn = 1, then

σ =

n−1∑
s=1

m(s) ·Cs−1n−2 =

n−1∑
s=1

pn−1s−1 · b
n
s ·Cs−1n−2 =

1

n− 1

n−1∑
s=1

bns = 1.

5.5 conclusion

For the strictly positive cooperative TU games in the multiplicative model,
we characterized a class of values satisfying multiplicative efficiency, mul-
tiplicativity and symmetry. The multiplicative efficiency and multiplicativ-
ity respectively, replace the additive efficiency and linearity which are com-
monly used in the additive model. This multiplicative approach follows the
idea of Ortmann [63], and can hence also be applied to insurance prob-
lems, banking problems, economics and medical science, as mentioned in
Ortmann’s paper. Inspired by the potential approach to the Shapley value
in the additive case by Hart and Mas-Colell [31], we defined a generalized
multiplicative potential, which can be used to characterize the MEMS value.
Besides, this potential is useful to derive the preservation of ratios property
for the MEMS value. This property is also called the generalized balanced
contribution property, since it is a modified version of the balanced contri-
bution property that was used by Myerson [52] to characterize the additive



128 values in the multiplicative model

Shapley value. Furthermore, the differences between the additive model and
the multiplicative model are discussed. In general, there exists a correspon-
dence between the MEMS value (in the multiplicative model) and the ELS
value (in the additive model).

We characterized the multiplicative Shapley value defined by Ortmann
[63], by means of the multiplicative efficiency, multiplicativity, symmetry and
the multiplicative dummy player property. Moreover a recursive formula for
the multiplicative Shapley value is given, and we proved that the multiplica-
tive Shapley value in the dual game equals that in the original game.

The concept of excess is generalized to the multiplicative game space. So
we are able to also define the Least Square value in the new game space.



6
C O N C L U S I O N S

In cooperative games, involved players are supposed to achieve their maxi-
mal total profit only when all of them cooperate. Then how to fairly divide
the total profit among all involved players becomes the main problem in co-
operative game theory. In the thesis, the Shapley value as well as several of
its extensions of cooperative games were discussed.

In Chapter 2, we studied the class of values satisfying efficiency, linearity
and symmetry (ELS value) on the classical game space (where the worth of
a coalition depends solely on the set of its members). Three different kinds
of characterizations were given for the ELS value. Firstly, we proved that the
ELS value is the unique value on the classical game space that admits a mod-
ified potential representation when two simple conditions are satisfied (cf.
Section 2.1). Secondly, an axiomatization for the ELS value was given using
Sobolev consistency together with λ-standardness on two-person games (cf.
Section 2.2). Thirdly, we axiomatized the ELS value by efficiency, symmetry
and a modified strong monotonicity (cf. Section 2.3).

The generalized game model (where the worth of a coalition depends not
only on its members as in the classical game, but also on the order of players
entering into the game) is discussed in Chapter 3. We axiomatized the gen-
eralized Shapley value by using two different groups of properties. The first
contains Evans’ consistency and standardness on two-person games (cf. Sec-
tion 3.2), and the second group contains associated consistency, continuity
and the inessential game property (cf. Section 3.3).

All characterizations in Chapter 4 are also based on generalized game
model. We defined a so-called position-weighted value and proved that it
satisfies efficiency, null player property and a modified symmetry. We pro-
posed a candidate for the position-weighted value, using Evans’ consistency
(with respect to a different procedure compared with the one used for the
generalized Shapley value) and standardness on two-person games (cf. Sec-
tion 4.1). Moreover, the generalized ELS value (cf. Section 4.2), Core and
Weber Set (cf. Section 4.3) were proposed in this game space.

In Chapter 5, the multiplicative game model (where the payoffs to play-
ers are treated in a multiplicative way, instead of the usual additive way) is
discussed. We defined the MEMS value as the unique value satisfying mul-
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tiplicative efficiency, multiplicativity and symmetry. The corresponding po-
tential representation as well as the so-called multiplicative preservation of
generalized ratios property were given for the MEMS value (cf. Section 5.2).
In addition, we also discussed the multiplicative Shapley value (cf. Section
5.3) and the multiplicative Least Square value (cf. Section 5.4).

Concerning the generalized game model, we already proved that the
weighted-position value of the form (4.3) satisfies efficiency, linearity, null
player property and strong symmetry. However, it is unclear whether we
can prove the weighted-position value is the unique value satisfying these
properties. One possibility is to seek for new necessary properties in the ax-
iomatization. For instance, one may refer to the axiomatization for the gener-
alized weighted Shapley value [5] (which is also asymmetric) and search for
possible ways to axiomatize the weighted-position value on the generalized
game space. Another possibility is to use a group of properties to pick up
one or several “good” candidates (i.e., to choose suitable weights), as what
we did in Section 4.1.3.
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